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Abstract
In this paper the analysis of the symmetric stiffened shell 
structure are introduced. The main purpose of this paper is to 
reduce the number of the unknowns in the compatibility equa-
tion to ease vehicle preliminary design process. One shell field 
contains a square-shaped shell and four rod with joints in the 
corner. Different cases are examined depending on the number 
of the shells.

Keywords
symmetric stiffened shell structure, vehicle preliminary design, 
indetermined shell structures

Nomenclatures
a	 Side size of the shell [m]
v	 thickness of the shell [m]
A	 Area of the shell [m2]
E	 Young Modulus [MPa]
G	 Shear Modulus [MPa]
i	 Element of the set I [-]
j	 Element of the set J [-]
k	 Element of the set K [-]
m	 Number of the rows [-]
n	 Number of the columns [-]
I	 Set for the unknown ident. [-]
J	 Set for the unknown ident. [-]
K	 Set for the unknown ident.	[-]
MSS	 Comp. matrix of the SS groups [Nm]
MSA	 Comp. matrix of the SA groups [Nm]
MAS	 Comp. matrix of the AS groups [Nm]
MAA	 Comp. matrix of the AA groups [Nm]
M4S	 Comp. matrix of the 4S groups [Nm]
M2S2A	 Comp. matrix of the 2S2A groups [Nm]
M2A2S	 Comp. matrix of the 2A2S groups [Nm]
M4A	 Comp. matrix of the 4A groups [Nm]
δpq	 Coeff. of the comp. matrix (p=q) [Nm]
δpq	 Coeff. of the comp. matrix (p≠q) [Nm]

1 Introduction
The stiffened shell structures appear quite a lot place in engi-

neering practice. These can be applied in various shapes in road 
and railway vehicle design as well. The generally used shapes are 
rectangular and square-shaped. Lucas dealt road and rail vehicles 
by analyzing the Argyris method (Lucas 1959; 1960; 1963).

In this paper the square-shaped shell structures examination 
is introduced, supported by symmetry planes. Adeleke investi-
gated some symmetry transformation of shells. This transfor-
mation can be used in a semi-invers method for studying mate-
rials. (Adeleke 1983; 1985). Thin-walled weakly conical and 
cylindrical shell with arbitrary open simply or multiply closed 
contour of transverse cross-section strengthened by longitudinal 
elements was examined by (Tyutyunnikov, Shklyarchuk, 2008).

1  Department of Automobiles and Vehicle Manufacturing,
Faculty of Transportation Engineering and Vehicle Engineering, 
Budapest University of Technology and Economics,
H-1521 Budapest, P. O. B. 91, Hungary
2  Department of Vehicle Elements and Vehicle- Structure Analysis,
Faculty of Transportation Engineering and Vehicle Engineering,
Budapest University of Technology and Economics
H-1521 Budapest, P. O. B. 91., Hungary
* Corresponding author, email: harth.peter@auto.bme.hu

Symmetric Stiffened
Shell Structures

Péter HARTH1, *, Pál MICHELBERGER†2

Received 30 May 2014

43(1), pp. 27-34, 2015
DOI: 10.3311/PPtr.7542

Creative Commons Attribution b

research article

PPPeriodica Polytechnica
Transportation Engineering

http://dx.doi.org/10.3311/PPtr.7542


28 Per. Pol. Transp. Eng.� Péter Harth, Pál Michelberger†

Local symmetry groups of dynamically and kinematically 
exact theory of elastic shells have been established. Definitions 
of the fluid, the solid, and the membrane shell was introduced in 
(Eremeyev, Pietraszkiewicz, 2006).

In our examination shells are planar structures and stiffened 
with rods, joined by perfect frictionless joints each other. The 
examined shell structures are built of m x n shell fields. The num-
ber of the shell in column is denoted by m and, in row is denoted 
by n. With this consideration there are three cases can be pass.

The first case is when m=n. These can be even or odd. If 
the number of the shells is even, symmetry planes are located 
between two shells, if odd the planes section the shells. 

Let examine the following shell structure (Fig. 1). This struc-
ture contains 4 shells and 12 rods with joints. The rods and the 
shells contact only by shear. Two neighbor shells have a com-
mon rod. Furthermore, structure has 4 symmetry planes.

Fig. 1 Shell unit with 4 symmetry planes

If m≠n, the shell structure has only 2 symmetry planes (Fig 2).

Fig. 2 Shell structure with 2 symmetry planes

2 Structure of shell
In our examination a 2 x 2 shell structure is considered like 

unit, called shell unit. This unit contains only one unknown 
which determines the normal load in rods and shear load in the 
shells. The number of the symmetry planes is 4 in shell unit. 
The inner load must be symmetric for all the symmetry planes 
(“1”, “2”, “3” and “4”). There are two type of shell unit; called 
symmetric and antimetric shell unit (Fig. 3 and Fig. 4). Every 4 
neighbor shell creates an unknown.

The outer load can be antimetric also for the symme-
try planes when m=n>2. The four symmetry states can be 
SSSS, SSAA, AASS and AAAA, where S means symmetry 
and A  means antimetry plane. For example, the state of the 

symmetry is AASS that means the outer load is antimetric for 
the “1” and “2” planes and symmetric for the “3” and “4”.

Fig. 3 Inner load in symmetric shell unit

Inner load can be described in other way; it is the antimetric 
pair of the symmetric shell unit (Fig. 4).

Fig. 4 Inner load in antimetric shell unit

The second case is when m≠n and one of m or n is 2. Here 
the number of the symmetry planes is only 2, because there 
is no opportunity to use the diagonal symmetry planes (“3” 
and “4”). The load can be symmetric and antimetric for all 
symmetry planes except that symmetry plane which is located 
between two shells. In other words, if a plane intersects an 
unknown, that plane must be symmetry plane. If not, the joints 
along the plane are not in static balance. 

If m≠n and m≠2 and n≠2 then the load can be antimetric 
for the symmetry planes contrary the previous case. (In the 
following that can be seen, some unknowns do not meet the 
symmetry requirements).

The disassembled structures with rods and shells can be 
seen on Fig. 5 and Fig. 6. On the figure below can be seen if 
the load symmetric for ”1”and “2”. The shear load is zero in 
the (n+1)/2th shells.

Fig. 5 Inner load in a 2x3 shell structure (SS--)



29Symmetric Stiffened Shell Structures� 2015 43 1

In antimetric case shear load is double in the (n+1)/2th shells 
(Fig. 6). 

Examine the following 2x4 shell structure (Fig. 7). Previ-
ously, between two shells the load would have had to be sym-
metric, but here the load can be antimetric for “2”.

Fig. 7 Inner load in a 2x4 shell structure (SS--)

Fig. 8 Inner load in a 2x4 shell structure (SA--)

The 2x4 shell structure is built of two different (2+1) shell 
units (Fig 7 and Fig. 8).

3 Applicability of the symmetry planes
Applicability of the symmetry planes are depending on the 

number of the shells. This declares which plane can be used dur-
ing calculation. In the mentioned unit shells there are no antim-
etry, only symmetry planes. In other words, if m=n=2, between 
two shells the load can be only symmetric. If m, n>2 there is 
opportunity to apply symmetry and antimetry plane.

The table shows the applicability of the symmetry planes 
depending on number of the shells (Table 1).

Twofold symmetric m x n shell structure contains (m-1) x (n-1) 
unknowns. One shell field can be contained up to 4 unknowns. 
The locations of the unknowns ordering are from the first shell 

in the first row. In the first row there are n-1 unknowns. Con-
tinuing the process in the last shell contains the (m-1) x (n-1)th 
unknown in the last row. These are examined in only one sec-
tion, because all the unknowns are mapped from here. 

In case of  m=n and higher order symmetry (SSSS, SSAA…), 
there is opportunity to complete with lower order symmetry.

During the preliminary design process, unknowns are divided 
into orthogonally groups to ease the calculation. The location of 
the symmetry and antimetry plane (“1”, “2”, “3” and”4”) deter-
mines the requirements of the group. If one unknown meets this 
requirement, this group contains the mentioned unknown. All 
the unknowns can be divided only one orthogonally group.

Let see some examples. Asymmetric 3x3 shell structure con-
tains 9 shells and 4 unknowns. Since m and n>2 the planes can 
be both symmetry and antimetry. Thus all the symmetry states 
can be passed. There are three different orth. systems which are 
applicable in the same time. The first is when the “1” and “2” 
planes are applied, the second is when “3” and ”4”, finally the 
third is when all planes are applied. In order the orthogonally 
groups are: SS--, SA--, AS--, AA--, --SS, --SA, --AS, --AA, 
SSSS, SSAA, AASS and AAAA. 

It is necessary to make a decision which orthogonally sys-
tem is practical during design process. If “1” and ”2” symmetry 
planes are used, all the four orth. groups contain one unknown, 
this means four pieces one-unknowns equation. If “3” and 
“4” symmetry planes are used,the --SS orth. group contains 
2 unknowns and there are two groups with one unknown, but 
--AA orth. groups does not exist.  If all the symmetry planes 
are used (“1”, “2”, “3” and “4”), only two orth. groups are exist 
with one-one unknown (SSSS and AASS), but here must to 
complete with a lower order orth. groups.

Applying higher order symmetry not the all unknowns can 
be divided into orth. groups, thus there are some unknowns 
which do not meet symmetry requirements and in these cases is 
needed to complete with lower order symmetry.

Table 1 Applicability of the symmetry planes

mxn “1” “2” “3” “4”

2x2 S S S S

2x3 S S/A ― ―

2x4 S S/A ― ―

3x3 S/A S/A S/A S/A

3x4 S/A S/A ― ―

4x4 S/A S/A S/A S/A

4x5 S/A S/A ― ―

5x5 S/A S/A S/A S/A

. . . . .

m≠n S/A S/A ― ―

m=n S/A S/A S/A S/A
Fig. 6 Inner load in a 2x3 shell structure (SA--)
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The fourfold symmetric structure is indetermined at:

m m −( )
+

2
2

0 5,

if m is odd and
	 m m −( )

+
2

2
1

if m is even.
The lower order groups cannot be optional; these must 

be SA-- and AS--. These lower order orth. groups cannot be 
passed in the higher one. 

Back to our 3x3 example in the process of the preliminary 
design there is no different between the lower and higher order 
symmetry groups, because all can be solved with four pieces 
one-unknown equation system. The complementary unknowns 
are denoted by “(x)” in Table 2.   In cases of 4x4 and lower 
order groups there are four-, two- and one-unknowns equation 
systems. Applied higher order, there are three-, two- and one-
unknown equation system achieved easier computational work.

The number of the unknowns in different orth. groups can 
be calculated in general form (Table 3, 4, 5, and 6).

If “1” and “2” symmetry planes are used, number of the 
unknowns in the orth. groups:

Table 3 Number of the unknowns when m=n or m≠n but both even or odd
(Only “1” and “2” are used)

m
;n SS-- SA-- AS-- AA--

e.
4

mn ( )
4
2 mn − ( )

4
2 nm − ( )( )

4
22 −− nm

o.
( )( )

4
11 −− nm ( )( )

4
11 −− nm ( )( )

4
11 −− nm ( )( )

4
11 −− nm

Table 4 Number of the unknowns when m≠n and one is even the other is odd 
(Only “1” and “2” are used)

m
;n SS-- SA-- AS-- AA--

e-o
( )

4
1−nm ( )

4
1−nm ( )( )

4
12 −− nm ( )( )

4
12 −− nm

o-e
( )

4
1 nm − ( )( )
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21 −− nm ( )

4
1 nm − ( )( )

4
21 −− nm

 “3” and “4” symmetry planes can be only used if m=n.

Table 5 Number of the unknowns when m=n and both are even or odd
(Only “3” and “4” are used)

m
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4
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All the symmetry planes can be only used if m=n.

Table 6 Number of the unknowns when m=n and all the symmetry planes are 
used

m
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The tables give the relationship between the number of the 
shells and unknowns belong to different orth. groups. In the 

Table 2 The number of the unknowns in different
orth. groups and shell numbers

Orth. systems and orth. groups

m
xn

N
um

be
r 

of
 th

e 
un

k. 1

2

3

4

S

S

-

-

S

A

-

-

A

S

-

-

A

A

-

-

-

-

S

S

-

-

S

A

-

-

A

S

-

-

A

A

S

S

S

S

S

S

A

A

A

A

S

S

A

A

A

A

2x
2 1 1 0 0 0 1 0 0 0 1 0 0 0

2x
3 2 1 1 0 0

2x
4 3 2 1 0 0

3x
3 4 1

1

(1)

1

(1)
1 2 1 1 0 1 0 1 0

3x
4 6 2 1 2 1

4x
4 9 4

2

(2)

2

(2)
1 4 2 2 1 3 1 1 0

4x
5 12 4 4 2 2

5x
5 16 4

4

(4)

4

(4)
4 6 4 4 2 3 1 3 1

5x
6 20 6 4 6 4

6x
6 25 9

6

(6)

6

(6)
4 9 6 6 4 6 3 3 1

(2)

(1)
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“mxn” column “e.” means m and n are even. The “o.” means 
both are odd and “e-o” m is even, n is odd.

4 Compatibility matrixes of the shell structures
The structure of the compatibility matrix is based on the 

orth. system (groups). All the orth. groups create a symmetric 
sub-matrix. From these sub-matrixes the comp. matrix can be 
easily written in (3) and (4).

D

M
M

M
M

12 =

[ ]
[ ]

[ ]
[ ]



















SS

SA

AS

AA

. .
. .
. .

. .

0

0

	

D

M
M

M
M

M
M

1234 =

[ ]
[ ]

[ ]
[ ]

[ ]
[ ]

4

4

0

0

S

SSAA

AASS

A

SA

AS

. . . .
. .
. .
. .
. .

. . . .



























The sub-matrixes are needed to determine the comp. 
matrixes. All these matrixes are symmetric, their rows and col-
umns number are equal with unknowns in the orth. groups. Let 
see an example; a 6x6 shell structure SS-- orth. group contains 9 
unknowns, thus the size of the MSS matrix is 9 x 9 and etc.

In the following the unknowns are examined in the second 
quadrant, because the other unknowns are mapped from here by 
the help of antimetry and symmetry. 

Using the properties of the symmetry and antimetry, 8 sub-
matrixes (MSS, MSA, MAS, MAA, M4S, M2S2A, M2A2S, and M4A) are 
determined in general closed form. The coefficient of the comp. 
matrixes is denoted with δpq. To identify the unknowns in the 
quadrant set-theory is applied.The introduced method is appli-
cable when “1” and “2” planes are used, because it is general in 
symmetric shell structure (see Table 2).

The different unknowns in the quadrant are denoted by x. 
Consider x an element of the UN set. With this set, unknowns 
can be described even and odd cases in different orth. groups as 
well. Indices E means even, O means odd case. The unknown 
does not exist (take into consideration) when it is intersected by 
an antimetry plane. In the subscripts the short of the different 
orth. groups are written.

Fig. 9 Location of the unknowns when m and n are even (6x6)

Fig. 10 Location of the unknowns when m and n are odd (7x7)

The number of the unknowns has determined yet in dif-
ferent orth. groups, but for the unknown identification only 
the symmetry requirement is used (SS--, --SS and SSSS). The 
numbering can be seen on Fig. 9 and Fig. 10.

,UN x x N x mn
4! #= +$ . 	
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	 ,j N nJ j j 2SS
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Let see an example; a 6x6 shell structure.
The SS orth. groups;

, , , ...x x N x mnUN 4 1 2 9! #= =+$ ". ,

, , ,I i N i mi 2 1 2 3SS
E ! #= =+$ ". ,

, , ,J j j N j n
2 1 2 3SS

E ! #= =+$ ". ,
	

, , ,,x UN x mS x n j j J2 1 8 92 7E
1 ! != = - =+` `j j$ ". , 	

(5)

(3)

(4)
(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)
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The SA orth. groups;
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The AS groups
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The AA groups
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Another example 6x5 shell structure
The SS and SA orth. groups;
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The AS and AA orth. groups;
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If all the symmetry planes are used (“1”, “2”, “3” and “4”) 
“2” and “3” symmetry planes determine the unknowns (Fig. 11 
and 12)  In case of the m is even the unknowns which are located 
“2” and “3” planes must be symmetric. In case of the m is odd 
the unknown which are located “3” must be symmetric.

The different unknowns in the third eighth of space are denoted 
by x. Consider x an element of the UN set. With this set, unknowns 
can be described even and odd cases in different orth. groups as 
well. Indices E means even, O means odd case. The unknown 
does not exist when it is intersected by an antimetry plane.

Let see two examples. If m=6 the number of the unknowns 
can be seen on Fig. 11.
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Fig. 11 Location of the unknowns when m is even and all  
the symmetry planes are used (6x6)

Fig. 12 Location of the unknowns when m is odd and all  
the symmetry planes are used (7x7)
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If m is odd and all symmetry planes are used the process of 
the unknown calculation modified a bit (Fig. 12). The S2 set is 
empty, because there is no unknown which is intersected with 
this plane. The S3 is stayed unchanging.

If m=7, the number of the unknowns
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5 Conclusion
Stiffened symmetric shell structure analysis is introduced in 

different symmetry cases. The number of the shell fields deter-
mines the process of the computational work. The comp. matrix 
of the structure can be easily created from the sub-matrixes. 
These sub-matrixes are determined by the help of the orth. sys-
tems. There are up to three different orth. systems can be appli-
cable, depending on the applied symmetry planes and number of 
the shell fields. The “1” and “2” symmetry planes can be used, 
if m=n or m≠n. This orth. system creates 4 orth. groups. The “3” 
and “4” symmetry planes can be used, if m=n. This orth. system 
contains of 4 orth. groups as well. Application of higher order 
symmetry (all the symmetry planes are used) make the easier 
computational work possible, but here is needed to complete 
with lower orth. groups. This orth. system contains 4 higher and 
2 lower orth. groups.It is clearly seen usage of higher order of 
symmetry reduce the number of the unknowns in one equation 
thus the computational work, but means a stricter requirement 
for outer load at the same time.
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