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Abstract

Public transit plays a crucial role in urban transportation systems, providing an efficient and sustainable mode of public transportation.
Performance evaluation of public transit is essential for achieving sustainable, efficient, and user-centric urban mobility systems.
Despite numerous studies on transit performance, there remains a lack of comprehensive frameworks that consolidate diverse
indicators, data sources, and evaluation techniques. This study conducts a systematic literature review using the PRISMA method to
synthesize 162 peer-reviewed articles on public transit performance published between 2001 and 2023. Key performance indicators
(KPIs) are categorized into five dimensions: safety and security, customer satisfaction, traffic, finance, and environment. The study
highlights the increasing adoption of data-driven tools-such as Automatic Vehicle Location (AVL), Automatic Passenger Counting
(APC), GTFS, and Al-based analytics-and identifies methodological trends across different transit modes. A visual mapping of KPIs
and data sources is presented to assist transit agencies, researchers, and policymakers. This review makes a unique contribution to

a unified, multi-dimensional framework for performance evaluation that aligns with current urban mobility challenges such as digital

transformation, resilience, and inclusivity.
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1 Introduction

In an era of rapid urbanization and climate change, public
transit systems are under increasing pressure to perform effi-
ciently, sustainably, and equitably. Evaluating transit perfor-
mance is essential for achieving these goals, as it helps pol-
icymakers and operators improve service delivery, allocate
resources, and enhance user satisfaction. However, the field
lacks a consolidated framework that integrates traditional
performance indicators with emerging tools and data sources.
This study addresses that gap by conducting a systematic
review of the literature to identify, categorize, and analyze
key performance indicators (KPIs), data collection tech-
niques, and evaluation methodologies across various dimen-
sions of transit performance. By mapping 163 studies from
the past two decades, this review offers a comprehensive ref-
erence for understanding how public transit performance has
evolved and where future efforts should be directed.

Due to the different forms of transportation, the large
number of origins and destinations, and the volume and
variety of traffic, urban transportation is incredibly com-
plicated. Mobility includes a substantial amount of urban

transportation, especially in densely populated areas
(Remi et al.,2009; Rodrigue, 2016; Yang and Tang, 2018).
The transport sector has a big impact on a nation's overall
development (Agarwal, 2009; Pradhan and Bagchi, 2013).
A strong economy depends heavily on transportation, which
is primarily responsible for moving people and goods
(Iles,2005; Adinataetal.,2021; Kimetal.,2024). Additionally,
the quickly expanding population, urbanization, and exten-
sive use of motor vehicles have made it difficult for people
to travel around in developing nations due to issues like traf-
fic jams, air, and sound pollution, and extreme energy con-
sumption. To deal with these changes and problems, develop-
ing nations must have effective transport planning. Utilizing
more environmentally friendly modes of transportation, par-
ticularly public transportation, is emphasized. Measurement
of performance indicators of transit systems is useful in plan-
ning, implementation, and review of these systems (Dajani
and Gilbert, 1978; Gwilliam, 1999; Zolfaghari et al., 2002;
Venigalla and Ali, 2005; Wiley et al., 2011; Ramlietal.,2012;
Poister et al., 2013; Shaik and Abdul-Kader, 2013; Anderson
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and Khan, 2014; Liuand Moini, 2015; Pojani and Stead, 2015;
Pathak et al., 2019; Singer et al., 2023).

While several reviews have addressed specific dimensions
of public transit performance, such as environmental impact,
service reliability, or customer satisfaction, this review dis-
tinguishes itself by offering a holistic and multi-dimen-
sional synthesis. Using the PRISMA approach, it categorizes
162 studies across five key domains—safety and security, cus-
tomer satisfaction, traffic, finance, and environment—and sys-
tematically maps the diversity of Key Performance Indicators
(KPIs) and data-driven methodologies employed in the liter-
ature. In contrast to earlier reviews that typically focus on
one performance aspect or technology, this work integrates
traditional and emerging methods (e.g., GPS-based AVL,
GTFS, APC, big data analytics, and Al tools) to provide a
unified framework for performance evaluation. This compre-
hensive scope and the visual mapping of KPIs and methodol-
ogies serve as a practical reference for researchers and tran-
sit authorities seeking to benchmark, improve, or innovate in
urban transit performance evaluation. In this article, literature
related to the performance measurement of public transit is
reviewed. The main key performance indicators are fetched
from the literature, and the same are tabulated and catego-
rized. Then, in subsequent sections, performance measure
methodologies of public transit are given.

2 Methodology

Citation chaining, also known as snowballing, is the process
of finding cited references (Boland et al., 2014; Bettany-
Saltikov and McSherry, 2016). To conduct a thorough
assessment, specialists in the field should be contacted for
any unpublished or newly submitted works relevant to the
review issue. This extensive search retrieves all relevant
material, a crucial aspect of a systematic review. To present
the aforementioned process, a Preferred Reporting Items
for Systematic Reviews and Meta-Analysis (PRISMA)
flow chart with four sections: identification, screening, eli-
gibility, and inclusion is given in Fig.1.

This figure illustrates the systematic review process using
the PRISMA framework, showing the number of records
identified, screened, assessed for eligibility, and included in
the final review. A total of 163 studies were selected from an
initial pool of 520 records.

2.1 Literature search strategy

The systematic review followed the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses)
guidelines. The literature search was conducted across major
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Fig. 1 PRISMA flow diagram for study selection process

databases, including Scopus, Web of Science, ScienceDirect,
IEEE Xplore, and Google Scholar, covering peer-reviewed
articles published between 2001 and 2023. Search strings
combined terms related to public transit and performance
evaluation (e.g., "public transport performance", "transit
key performance indicators", "urban mobility", "transit data
sources", "AVL", "GTFS", "APC", "machine learning in

transit") using Boolean operators.

2.2Inclusion and exclusion criteria
Studies were included if they:
1. addressed public transit system performance,
2. used or discussed measurable KPIs,
3. involved real-world data or data-driven methods,
4. were published in English.

Exclusion criteria included: conference abstracts, editori-
als, purely conceptual papers without empirical support,
and studies focused solely on non-transit mobility (e.g.,
ride-hailing or personal vehicles).

2.3 Study selection and quality assessment

After duplicate removal, a two-stage screening process was
applied: first, titles and abstracts were reviewed, followed
by full-text assessment. Of 520 initially retrieved records,
163 met all inclusion criteria. Although formal quality scor-
ing (e.g., GRADE or CASP) was not applied due to meth-
odological diversity, each selected study was assessed for
clarity of objectives, relevance of performance measures,
methodological rigor, and data transparency.



3 Review of performance measure KPIs

Transit city buses play a crucial role in urban transporta-
tion systems, offering residents and commuters a convenient
and efficient travel option. To evaluate and enhance their
performance, it is essential to establish Key Performance
Indicators (KPIs). These KPIs provide a structured frame-
work for assessing service quality, operational efficiency,
and sustainability, enabling transit authorities to make data-
driven decisions for better service delivery.

Among the most critical KPIs are on-time performance,
which measures adherence to published schedules, and head-
way adherence, which evaluates the consistency of bus inter-
vals to reduce irregularities. Passenger load is another import-
ant measure, assessing average occupancy during peak and
off-peak hours to prevent overcrowding and optimize fre-
quency. Operational efficiency is further captured by dwell
time, which reflects the duration buses spend at stops, and
travel-time deviation, which compares actual versus sched-
uled travel times. Additionally, bus bunching highlights inef-
ficiencies when multiple buses arrive together, while waiting
time measures the typical duration passengers spend at stops,
directly influencing customer perception.

Broader measures of service quality and sustainability
include service reliability, which accounts for breakdowns,
disruptions, and operational resilience, and customer sat-
isfaction, gauged through passenger surveys on comfort,
safety, cleanliness, and communication. Finally, environ-
mental impact is an increasingly vital KPI, assessing fuel
efficiency, emissions reduction, and the adoption of greener
technologies. Together, these indicators provide a holistic
understanding of bus system performance and guide strate-
gies for delivering reliable, passenger-focused, and environ-
mentally sustainable transit services.

A comprehensive review of the literature enabled the cat-
egorization of KPIs into five groups, with corresponding ref-
erences presented in Table 1.

This categorization and the corresponding KPIs are pre-
sented in Fig. 2 to Fig. 6, with their respective unit of mea-
surement indicated in brackets. The quantitative and quali-
tative KPIs for transit systems identified in this study have
been established through a detailed review of the relevant
literature (Krynauw and Cameron, 2003; McKinnon, 2007;
McKinnon et al., 2009; Toledo, 2011). These references
provide the foundation for defining indicators that capture
both operational efficiency and service quality in transit
performance assessment. Moreover, detailed summary of
KPIs are given in Appendix A.

Establishing and monitoring such KPIs is crucial for eval-
uating the performance of city bus transit systems and for
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Table 1 KPI categories and references

Eallntlegory Key References
Hess (2006); Zimmerman and Simonoff (2008);
Iweze (2011); Aderamo, (2012); Polunsky (2017);
Safety & Charly and Mathew (2020); Reddy et al., (2020);
Security Ceccato et al., (2022); Chai et al., (2022); Fan and
Yang (2022); Pulugurtha and Srirangam (2022);
Singh et al., (2022); Zuo (2022)
Aydin et al., (2015); Huo et al., (2015); Olivkova (2015);
Gao et al., (2016); El-Diraby et al., (2019);
Customer Zhang et al., (2019); Askari et al., (2021);

Satisfaction Choi et al., (2021); Zheng et al., (2021);
Silveira et al., (2022); Chuenyindee et al., (2022);

Shabani et al., (2022); Shbeeb (2022); Luo et al., (2023)

Alkhatib et al., (2022); Bolafios et al., (2022);
Lee and Miller (2022); Naevestad et al., (2022);
Ahmad et al., (2023); Coulombel et al.,(2023); Zhang
and Wu (2023)

Traffic

Lee (1989); Karlaftis and Mccarthy (1997);
Li and Wachs (2004); Kennedy et al., (2005);
Kiggundu (2009); Tang and Lo (2010);

Min et al., (2015); Estrada et al., (2021);
Goodman et al., (2021); Krelling and Badami (2022);
Spernbauer et al., (2022); Awad et al., (2023);
Coulombel et al., (2023); Deng et al., (2023);
Klar et al., (2023)

Donnelly et al., (2007); Paget-Seekins (2012);
Jamil et al., (2015); Abbasi and Nilsson, (2016);
Kang et al., (2017); Di Vaio et al., (2018);
Abbasi et al., (2020); C. C. Kang et al., (2020);
Fulzele and Shankar (2023); Kumar et al., (2021);
Motlagh et al., (2021); Purnell et al., (2022);
Severino et al., (2022); Zhang et al. (2023)

Finance

Environment

ensuring efficient, reliable, and sustainable public transpor-
tation services. By systematically tracking these indicators,
transit authorities and operators can identify shortcomings,
make evidence-based decisions, optimize resource allocation,
and enhance the overall passenger experience. Furthermore,
the continuous measurement and analysis of KPIs enable
transit systems to adapt to changing travel demands, promote
long-term sustainability, and contribute to the development
of smart and connected urban mobility solutions.

4 Review of performance measure strategies

The gathering and examination of data from diverse sources
is a necessary step in the performance evaluation of trans-
portation. Data collection techniques include automatic vehi-
cle positioning systems, passenger counters, and onboard
surveys. The obtained data is then subjected to statistical
analysis methods, benchmarking, and simulation modeling
to produce actionable insights. These methodologies provide
a comprehensive understanding of bus performance and
enable data-driven decision-making. The summary of these
methodologies and the outcomes are given in Appendix B.
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Fig. 2 KPIs related to safety and security
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Fig. 3 KPIs related to customer satisfaction

4.1 Fixed sensor and vehicular sensor networks

Traditionally, traffic data has been collected through sta-

tionary devices such as loop detectors, traffic cameras, and

weather stations installed at key intersections and corridors to
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Fig. 4 KPIs related to traffic
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Fig. 5 KPIs related to finance
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Fig. 6 KPIs related to environment

measure variables like vehicle count, density, and road con-
ditions. These fixed sensors are purpose-built, widely used,
and provide reliable data with known error levels. However,
their coverage is limited to immediate locations, and installa-
tion is costly, time-consuming, and often disruptive to traffic
(Zhang et al., 2007).

Fixed sensor networks often fall short for advanced traf-
fic control in urban environments, where conditions are
more complex than highways. In contrast, vehicles dis-
persed across road networks now carry sensors and commu-
nication tools that can provide valuable real-time measure-
ments, with taxis and public transport vehicles often serving
as centralized probe fleets. Although initially limited to local



deployments, efforts have been made to scale probe vehicle
networks (Young, 2007). Over recent decades, increasing
interest has focused on connected vehicle systems, exem-
plified by the IEEE 802.11p WAVE standard (2010) and the
U.S. DoT's push for mandatory V2V/V2I radios. These ini-
tiatives converge toward the Internet of Vehicles (IoV), inte-
grating probe cars, VANETS, and telematics to connect peo-
ple, vehicles, and environments.

4.2 User mobility/ mobile location services

Vehicle sensor data is largely controlled by the automotive
industry, limiting external access. Most probe vehicle sys-
tems rely on Global Navigation Satellite System (GNSS)
receivers with communication equipment for data transmis-
sion, though passenger mobile devices equipped with GNSS,
accelerometers, WLAN, and cellular radios also enable
positioning and context sensing. Biagioni et al., (2011) intro-
duced EasyTracker, a smartphone-based system designed
for smaller transit agencies to implement transit tracking and
arrival time prediction. By equipping vehicles with smart-
phones running a dedicated app, the system autonomously
detects stops, identifies routes, infers schedules from GPS
traces, and predicts arrival times through online algorithms.
Similarly, Chen et al., (2014) proposed a method to model
and compare user mobility profiles by applying frequent
sequential pattern mining, incorporating both location and
temporal semantics, and validating their approach on data-
sets from Yonsei University and Microsoft Research Asia,
showing improved performance over prior works.

The availability of third-party mobility data services fur-
ther expands transportation analysis. The Google Distance
Matrix API provides detailed information on car trip times,
enabling large-scale modeling. Dumbliauskas et al., (2017)
used free and open-source software (Python and QGIS) to
build the spatial framework and extract data for the full city
of Kaunas and its surroundings. Their study produced rela-
tive trip time graphs, examined travel time variability, and
developed a mean journey time matrix suitable as a skim
matrix for validating the Kaunas city macro model.

4.3 GPS-based Automatic Vehicle Location (AVL)

Aoki et al., (2018) developed the BusBeat early event detec-
tion method, which leverages GPS trajectory data from peri-
odic vehicles—such as buses, shuttles, garbage trucks, and
police cars—that routinely operate on pre-planned routes.
By incorporating a Time-dependent Congestion Network
(TCN), BusBeat enables real-time identification of geo-
spatial events without compromising privacy, as slow traf-
fic patterns around event venues can signal occurrences
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even before participants arrive. Complementary research
by Mazloumi et al., (2010) analyzed travel time distri-
butions, highlighting their role in urban transit planning.
Traditional applications of Automatic Vehicle Location
(AVL) data, such as displaying arrival and departure esti-
mates on digital boards, have now extended to smart-
phone-based trip planners, offering passengers informa-
tion on missed connections, alternate routes, and delays.
More advanced Intelligent Transport Systems (ITS) even
provide connection assurance, holding services briefly to
facilitate passenger transfers when delays occur. However,
the accuracy and reliability of data remain critical to build-
ing user trust. In developing contexts, Kumar and Singh
(2010; 2012) explored the construction of Advanced
Traveler Information Systems (ATIS), discussing system
architecture, development, and key features. Meanwhile,
the growing use of probe vehicles equipped with GPS
and sensors has expanded possibilities for traffic monitor-
ing. To enhance absolute location estimation, Upadhyay
et al., (2020) proposed a sensor fusion model based on an
extended Kalman filter, integrating GPS and inertial mea-
surement unit (IMU) sensor inputs.

Beyond real-time monitoring, GPS trajectory data sup-
ports predictive and classification applications in urban
mobility and planning. Petersen et al., (2019) introduced a
method exploiting non-static spatiotemporal correlations in
metropolitan bus networks to forecast journey times, cap-
turing patterns often overlooked by conventional models.
For transportation planning and traffic management, iden-
tifying travel modes (e.g., bicycles, walking, cars, trains)
is essential. While surveys once dominated, the Global
Positioning System now enables more precise data collec-
tion, avoiding underreporting biases; however, raw GPS
traces lack explicit travel mode labels. To address this,
researchers have applied segmentation techniques to infer
transportation modes from trajectories (Biljecki et al., 2013;
Dabiri et al., 2020). Similarly, trajectory data can facili-
tate land-use classification, with Pan et al., (2013) demon-
strating its potential through analysis of year-long traces
from 4,000 taxis to understand the social function of urban
spaces. GPS data also supports identification of potential bus
stops, as shown in studies by Biagioni et al., (2011), Stenneth
and Yu (2013), and Garg et al., (2018), further emphasizing
its versatility in mobility and urban research.

4.4 Big data/data mining

Applications of trajectory data mining span across path-find-
ing, location or destination prediction, movement behav-
ior analysis of single or multiple moving objects, trajectory
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interpretation, and a variety of urban service applications.
Despite its potential, the management, processing, and
mining of trajectory data present significant challenges
(Baraniuk, 2011; Liu et al., 2013). The vast amount of tra-
jectory data generated at high speed is difficult to store,
and discrepancies in sampling methods or sampling rates
make it nearly impossible to establish reliable similarity
scores for comparison. The spatial and temporal complex-
ity of these datasets further complicates query processing.
Mobility data itself exists in multiple forms, depending on
the underlying recording technology. Spinsanti et al., (2012)
classified trajectory data into three primary types—GPS-
based, GSM-based, and geo-social network-based—while
Pelekis and Theodoridis (2014) added RFID- and Wi-Fi-
based formats. GPS data are composed of chronologically
ordered sequences of geographic coordinates captured by
GPS-enabled devices, GSM data consist of ordered cell
identification sequences, and geo-social data are derived
from geographic metadata attached to social media.
Data mining, as a critical step in the knowledge discovery
process, enables the extraction of meaningful information
from such massive datasets (Fayyad et al., 1996; Maimon
and Rokach, 2009). In addition to conventional relational and
transactional databases, spatial data mining tasks have also
beenreviewed (Mennis and Guo, 2009; Miller and Han, 2009).
Andrienko et al. (2011) proposed a conceptual framework for
categorizing movement analysis methods into tasks, while
Castro et al. (2013) specifically analyzed taxi traces under
operational, traffic, and social dynamics.

Primary trajectory mining approaches focus on clus-
tering and classification. Modern clustering algorithms
extend traditional clustering approaches by incorporating
trajectory similarity measures (Han et al., 2011), with dis-
tance and similarity functions explained in detail by Rokach
(2009). Numerous clustering techniques exist (Fraley
and Raftery, 1998; Han et al., 2009; Han et al., 2011),
though boundaries between categories remain ambig-
uous. Classification, on the other hand, seeks to assign
objects to predefined classes using labeled training sets
(Han et al., 2011). Beyond these primary tasks, secondary
mining approaches examine spatial, temporal, or spatio-tem-
poral arrangements to reveal hidden movement patterns.
For example, Dodge et al., (2008) provided an integrated
survey of movement pattern mining, while outlier detec-
tion has been applied at both sub-trajectory (Lee et al., 2008;
Liu et al., 2012; Yuan et al., 2011) and full-trajectory lev-
els (Zhang et al., 2011). Trajectory data also support predic-
tive applications, such as forecasting future locations using

Markov models or trajectory patterns. These prediction
methods are categorized into three groups: those using only
individual moving object data (Gidéfalvi and Dong, 2012;
Jeung et al., 2008; Krumm and Horvitz, 2006; ), those incor-
porating other moving objects (Backstrom et al., 2010), and
hybrid approaches (Monreale et al., 2009; Morzy, 2006;
Ying et al., 2011).

4.5 General Transit Feed Specification (GTFS)

General Transit Feed Specification (GTFS) data, widely
produced and shared by agencies, provides schedules, stop
and route locations, and service details, and has become the
de facto standard for transit data despite being underuti-
lized (Wong, 2013). Visualization approaches, such as
PubtraVis (Prommabharaj et al., 2020), highlight its poten-
tial, while conformance analyses (Queiroz et al., 2019)
reveal discrepancies between GTFS routes and bus GPS
trajectories, exposing data inconsistencies. Complementing
this, Nissimoff (2016) developed a C# tool integrating
static GTFS data with the "Olho Vivo" real-time API and
machine learning to predict bus arrival times.

4.6 Automatic passenger counters (APC) /Automated
Fare Collection (AFC)

Automatic passenger counting (APC) employs technolo-
gies such as infrared (IR) door sensors, cameras, and fare
collection data, with automated fare collection (AFC) sys-
tems—including mobile apps, validators, and electronic
fareboxes—providing both passenger counts and a seamless
travel experience across modes. APC accuracy focuses on
the error distribution between measured and actual pas-
senger activity; Kimpel et al., (2003) evaluated Tri-Met's
APC system using video surveillance as a reference, while
Siebert and Ellenberger (2020) introduced a revised t-test
to address type I and II errors in assessing APC precision.

4.7 Manual surveys

Manual surveys remain a simple yet effective method
for collecting transit performance data (Putra, 2013;
Putra et al., 2014; Randheer et al., 2011). For instance, Girma
(2022) used questionnaires to interview frequent bus users
in Addis Ababa, while market research has long empha-
sized customer satisfaction as a measure of perceived ser-
vice quality. Eboli and Mazzulla (2009) developed a custom-
er-perspective index and later proposed the Heterogeneous
Customer Satisfaction Index to account for differences in
user perceptions across service components. Similarly,
Islam et al. (2014) examined links between service quality



and user satisfaction in Sintok, Malaysia, through ques-
tionnaire surveys, finding that service quality significantly
shapes perceptions. In Ghana, Sam et al., (2018) surveyed
over 100 public transport users in Kumasi and, using mul-
tiple regression and paired-sample t-tests, revealed notable
gaps between expectations and perceptions, highlighting
overall dissatisfaction with bus services.

4.8 Clustering of trajectories/GPS coordinates

In urban settings, taxi supply and demand are often imbal-
anced; Chang et al. (2010) addressed this by forecasting
demand distributions using time, weather, and location con-
texts through data filtering, grouping, semantic annotation,
and hotness computation, demonstrating via a web mash-up
that context-aware clustering improves fleet management.
Similarly, Liu et al. (2018) applied Affinity Propagation
(AP) clustering to taxi OD points to optimize depot loca-
tions, refining hierarchical clustering with administrative
segmentation and adjusting input parameters for low sim-
ilarity matrices. Beyond clustering, transit performance
can be assessed through service/garage reports, onboard
surveys, Bluetooth, fuel, and emission data, analyzed sta-
tistically to identify correlations, trends, and significance.
Benchmarking against industry standards or peer systems
highlights performance gaps, while simulation modeling tests
schedule, route, or fleet adjustments virtually before real-
world application. Cost-benefit analysis evaluates financial
efficiency in terms of operations, revenues, and investment
priorities. Finally, stakeholder engagement—via passenger,
driver, authority, and community feedback—provides qualita-
tive insights on satisfaction, accessibility, and impact, ensur-
ing a holistic evaluation framework for enhancing efficiency,
reliability, and service quality in public transit systems.

To enhance the real-world relevance and utility of the
reviewed KPIs and methodologies, some key practical appli-
cations and case studies are tabulated in Table 2. These case
studies underscore the practical application of KPIs and per-
formance methodologies, supporting evidence-based plan-
ning, monitoring, and evaluation of public transit systems.

5 Conclusion and future scope
This review synthesized findings from 163 studies to pro-
vide a comprehensive framework for evaluating public
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transit performance across five domains: safety and secu-
rity, customer satisfaction, traffic, finance, and environment.
By integrating traditional indicators with emerging data
sources and methodologies—including GPS-based AVL,
GTFS, APC, and big data analytics—the study highlights
how performance assessment has evolved toward more real-
time, data-driven, and user-focused approaches.

While notable progress has been made, challenges
remain in standardizing data, ensuring accessibility, and
incorporating equity and resilience into evaluation frame-
works. The review serves as a consolidated reference for
researchers and practitioners, offering guidance for bench-
marking, planning, and advancing sustainable, efficient,
and user-centric transit systems.

Despite increasing attention to public transit performance
evaluation, this review highlights three key gaps. First, stan-
dardized multi-dimensional KPI frameworks that com-
bine service-level and system-level indicators are still lack-
ing, especially in developing cities. Second, the integration
of real-time and big data sources (e.g., GPS, APC, GTFS,
mobile sensing) with qualitative dimensions such as equity
and user satisfaction remains limited. Third, resilience is
underexplored—few studies examine performance under
atypical conditions like pandemics or extreme weather, and
emerging tools such as Al and machine learning remain
experimental with limited validation. Moreover, perfor-
mance assessments are often disconnected from policy and
funding outcomes, reducing their practical impact.

To address these gaps, future research should focus on:

1. studying modal shift behavior to encourage car-to-

transit adoption;

2. enhancing first-/last-mile connectivity through inte-

grated hubs and micromobility;

3. incorporating climate resilience into transit planning;

4. developing Al-driven real-time decision support

systems;

5. embedding spatial and demographic equity indica-

tors into evaluation frameworks;

6. adopting mixed methods to capture user experiences

alongside quantitative data.

Together, these priorities can support the development of
adaptive, equitable, and data-driven public transit systems.

Table 2 Mapping of methodologies to practical Applications

Methodology

Applied in

Utility

AVL & GPS trajectory analysis
Smartphone-based tracking
Manual surveys

GTFS data visualization

Kaunas, Lithuania (Dumbliauskas et al., 2017)
EasyTracker (Biagioni et al., 2011)
Addis Ababa, Ethiopia (Girma, 2022)
Calgary, Canada (Prommaharaj et al., 2020)

Travel-time reliability, skim matrices
Real-time prediction, low-cost transit tracking
Customer satisfaction, quality benchmarking

Route compliance, schedule analysis
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A1 Summary of key performance indicators (KPI) and findings from the literature

Ref.

KPI's

Objectives

Findings

Oruganti et al. (2016)

Valdés et al. (2017)

Harsha et al. (2020)

Coghlan et al. (2019)

Aoki et al. (2018)

Prommabharaj et al.
(2020)

Mazloumi et al. (2010)

Nguyen et al. (2018)

Bus schedule datasets
Real-time transit feeds Time-
point feed Traffic flow feed
Weather condition feed

Frequency or Interval Percent
Person- Minutes Served Transit
Service Accessibility Index
Index of Transit Service
Availability
On-Time Performance (Fixed-
Route) Headway Regularity or
Adherence
Run-Time Ratio
Travel Time

Travel time Running time

Transit Delays Arrival Time
Prediction Stop arrival times

Bus speed Vehicle speed
changes
avg. of tweets per day
avg. of check- ins per day

mobility speed flow density
headway

Travel time variability

Travel-time reliability on-time

performance travel-time
estimation.

Effects of local events and other
environmental factors on travel
delay

To create a way for obtaining
real-time data from huge
databases produced by deployed
GPS- based AVL systems, and to
suggest new metrics for service
improvement using "Big Data"

To comprehend the distribution of
journey times on the varied flow
of traffic in developing nations.

To determine the best way to pre-
process or filter the huge quantity
of AVL data that a transit bus
generates. And to identify useful
classification criteria for the
condition of the bus at any given
time and the length of any delays.

Predicting the likelihood of
a major event is crucial for
reducing accide nts. People who
lack a desire for the event
may adjust their plans or take a
diversion when they are aware of
it in advance in order to prevent
getting stranded in heavy traffic.

This study intends to show
the potential of GTFS data
by describing the design and
development of a tool for
displaying GTFS data that
shows the spatial and temporal
patterns of transit services
and allows the extraction of
qualitative data and insights.

With the help of a GPS data set
for a bus route, this research
aims to examine the day-to-day
variability in trip times on public
transportation.

The authors process and analyze
trajectory data in real-time to
evaluate the effectiveness of Los
Angeles' public transportation
system.

Created a model that forecasts how weather and
traffic will affect transportation system delays.

High variations in running time were observed. A
new performance measure "inflated headway score
(IHS)" is proposed. Routes have a morning peak,
an afternoon peak, and a low point at noon.

When compared to other distributions, the
Generalized Extreme
Value (GEV) distribution performs comparably
better in both temporal and geographic
aggregation. At both the route and segment levels,
the Generalized Extreme Value (GEV) distribution
fits trip timings the best.

A reusable system was developed for the delay
assignment analysis that will: 1. Filter out
incorrect trips. 2. Calculate the amount of delay
brought on by the three primary sources by
dissecting a trip into its component pieces. 3. Offer
delay values by DoW, ToD, and pattern.

Developed a technology that collects GPS data
from frequent vehicles and is also capable of early
identification of events without violating anyone's

privacy. By utilizing an essential attribute of
periodic cars—which routinely go along a pre-
planned route with a predetermined departure
time—his interpolation technique recovers the lost
GPS data before the participants arrive.

Using six visualization modules—mobility, speed,
flow, density, headway, and analysis. To measure
and visualize the performance of the public transit
system from various perspectives, this study
develops a brand-new interactive visual analytics
tool called PubtraVis that makes use of the GTFS
data that carries schedule information

For different departure time windows at different
times of the day, this study examined the kind and
form of travel time distributions.

Through an interactive web-based application, the
authors show how the results of data analysis can
be visualized.

The created algorithms and systems offer strong
tools to find problems and boost the effectiveness
of public transportation networks.
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A1 Summary of key performance indicators (KPI) and findings from the literature (continued)

Ref.

KPI's

Objectives

Findings

Petersen et al.
(2019)

Dumbliauskas et
al. (2017)

Zhou et al. (2019)

Dabiri et al.
(2020)

Ismail and Said
(2015)

Tiznado-Aitken et
al. (2021)

Fadaei and Cats
(2016)

Barabino et al.
(2020)

Travel time variability

Travel time fluctuation during
the day calculation of travel time
variability estimation of origin-

destination (OD)

Bus journey time
Route distance Deviation degree

Maximum speed
Mean speed
Mean moving speed Average
proximity to some infrastructure

Total distance
Total traveled time

Travel speed acceleration and
braking temporal spacing between
vehicles buffer times space within

the vehicle share of dedicated

rights-of-way density within the
vehicle on-time performance
headway adherence service
duration

Vehicle running time and rest time
Reliability Demand patterns
total vehicle trip time
layover and recovery times
passenger waiting time passenger
in- vehicle time
passenger travel time
monetary values
operator costs

Offer of services Accessibility
information Attention is given
to passengers Comfort safety
and security effects on the
environment

Traditional approaches struggle with
congestion, and as a result, travel time
variability rises in cities, making it difficult
to anticipate travel times in metropolitan
regions. This study's goal is to create a system
for forecasting bus travel times that takes
advantage of the non-static spatiotemporal
correlations seen in metropolitan bus
networks, allowing the identification of
detailed patterns that are overlooked by
traditional methods.

This study aims to analyze data on car
travel times that Google Company has
gathered from smartphone users.

To identify the covered road sequence for
a particular bus route, this article aims to
develop an algorithm that makes use of
bus stop information and historical bus
positions, or places where buses have
previously been.

This study aims to create a mechanism
for classifying movement data into single-
modal segments and dividing them into
groups based on the mode of transportation.

This study attempts to demonstrate how
Kuala Lumpur's multi- mode transportation
concept was used to determine the best path

in the city's highly developed and intricate

transportation system. More specifically, it

combines all modes of urban transportation
into one intelligent data model.

This study outlines a framework for
examining opportunities' accessibility via
public transportation. It takes into account

how highly the user values factors that
affect the level of service during his journey
and the amount of competition for urban
prospects.

This article outlines an evaluation
framework and a step-by-step process for
measuring the effects of operational and
design changes on public transportation.

This research aims to create a
comprehensive approach that identifies
a large number of KQI, describes their

characteristics, enlists the help of experts

to elicit opinions for each KQI, assesses

the large number, and identifies the most
promising set.

They used the long short-term memory
(LSTM) and convolutional layers to
develop a deep neural network model
with numerous outputs and time steps.
The method is empirically evaluated and
compared to other
well-known techniques for predicting
trip times. They find that their model
outperforms every other method they
compare it with, by a significant margin

In this study, the initial framework was
established using GIS tools, and data
extraction, analysis, and visualization

were all done automatically using Python
programming language. The evaluation led
to the calculation of these KPIs.

They construct a high- quality GPS
trajectory for the bus route before using a
cutting-edge map-matching algorithm to the
resulting packed trajectory to determine the
road sequence.

Their suggested approach is examined using
actual bus line data from more than 400 bus
services in Singapore.

A seventeen-million- point data set
gathered in Europe was used to evaluate
their new methodology. When the
classified results are compared to the
reference data produced via manual
classification, the accuracy of the
classification using the prototype is
calculated to be 91.6%.

The result enables users to better
understand outcomes in terms of
visualization, total distance traveled, and
total time spent traveling and produces
a directional map to choose the best
path based on either time or distance as
impedance.

They find that the introduction of
competition has a more significant impact
than the addition of a purely arbitrary
grading system for service quality.

In a field experiment in Stockholm, they
apply the suggested evaluation framework.
The comprehensive evaluation of the
effects of design and operational measures
allows for the comparison of various
implementations, the evaluation of their
efficacy, the prioritization of alternative
measures, and the creation of a solid
foundation for investment motivation.

An application built using a Monte
Carlo simulation method and data from
an international survey serves as a
demonstration of this integrated approach.
Additionally, by connecting these results
with those acquired from two separate
techniques, a constrained and pertinent set
of 9 overlapping KQI is generated.
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A1l Summary of key performance indicators (KPI) and findings from the literature (continued)

Ref.

KPI's

Objectives Findings

Curtis and Scheurer (2017)

Ona et al. (2016)

Minimum service
standard travel
impediment, weekday
inter peak

Availability Accessibility
customer care time,
safety and security

To evaluate the level of accessibility in
current public transportation systems
and as a potential criterion for future
planning and investment, this article

discusses the usage of accessibility
performance measures.

The results demonstrate a relationship
between accessibility performance indicators
of network and service designs and the
prevalence of successful urban public
transport systems, as evaluated by patronage.

Through the use of cluster analysis, this

study assesses the metropolis of Seville's

(Spain) quality of service for a variety of
customer profiles.

Six user profiles were discovered, and it was
discovered that each of them has a unique
perspective on the service, with varying gaps
between those perspectives.

Appendix B

A2 Summary of methodologies/datasets and outcomes

Ref.

Methodologies

Outcomes

Biagion et al. (2011)

Valdés et al. (2017)

Harsha et al. (2020)

Coghlan et al. (2019)

Aoki et al. (2018)

Chen et al. (2014)

Prommabharaj et al.
(2020)

Berkow et al. (2009)

Queiroz et al. (2019)

Chang et al. (2010)

Liu et al. (2018)

User mobility/
mobile location
services

Vehicular Sensor
Networks GPS
based AVL

GPS based AVL

GPS based AVL

GPS based AVL

User mobility/
mobile location
services

General Transit
Feed Specification
(GTES)

GPS based
AVL Automatic
passenger
counters Vehicular
Sensor Networks

General Transit
Feed Specification
(GTES)

Clustering of
trajectories/GPS
coordinates

Clustering of
trajectories/GPS
coordinates

Their model is robust enough to anticipate future travel with an acceptable error and can explain the
variation in the bus trip time.

Developed a method that successfully collected real-time data from enormous databases created by
GPS-based AVL systems installed in public transit vehicles, combined that data with information on
transportation demand available from other sources, including the Census, and proposed new metrics
to help improve service using "Big Data"

It is discovered that the GEV distribution, both at the route and segment levels, better suits the journey
time under varied traffic conditions. This distribution performed generally substantially better than
every other one of the chosen distributions.

Produced instruments for organizations and planners to evaluate and enhance the effectiveness of
transportation services using big data analytics and in-the-moment forecasts.

Developed a technology that gathers GPS information from random cars and can identify events
before they happen without violating people's privacy. His interpolation technique recovers the lost
GPS data event before the participants arrive by making use of the primary feature of periodic-cars,

which regularly go on a pre-scheduled route with a pre-determined departure time.

They put forth a fresh approach to building users' movement patterns. They offered a solution for how
user similarity comparison may include location semantics and temporal semantics.

This research builds on past findings and creates PubtraVis, a new public transit system operating
visualization tool. Public transportation operators, local politicians, and the general public can all
communicate more easily about the design and operation of public transportation by using PubtraVis,
which can be a useful tool to demonstrate the dynamic nature of transit vehicles from the entire transit
network at a glance.

Based on an analysis of one year's worth of historical data for all routes and stops, a visualization
tool is produced. A number of statistical models are also developed to demonstrate how the statistical
analysis may result in new and relevant transit performance measures (TPMs) in addition to those
previously provided by the transit sector as a whole.

They showed that buses running in various cities do not always follow the predetermined route,
highlighting a flaw in the GTFS. Some discrepancies, like the inaccurate GPS route label, are more
problematic and need to be addressed right once. With a more effective strategic strategy in the GTFS
design and real-time monitoring of bus GPS data, additional inconsistencies could be prevented.

The taxi demand analysis problem is solved in this paper using a four-step methodology. Records of
taxi requests are filtered based on the context. The spatial distance is used to group these records.
Finding related roads for each detected cluster allows for the association of the cluster with the
semantic significance of the representative roads. Then, using the cluster's characteristics and the
distance between it and the taxi driver, the hotness index is determined.

To solve the extremely complicated challenge posed by the massive data collection, they provide an
efficient AP clustering method based on administration region segmentation. Any city can use the
methodological framework if the data gathering is feasible.
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A2 Summary of methodologies/datasets and outcomes (continued)

Ref.

Methodologies Outcomes

Dabiri et al. (2020)

Pan et al. (2013)

Nissimoft (2016)

To determine the class of the vehicle (bus, car, etc.) from its trajectory,
GPS based AVL Fixed Sensor Networks User a neural network is advised. This study introduces a novel type of
mobility/ mobile location services GPS trajectory that not only works with deep learning models but also
considers both the road parameters and the vehicle velocity.

The classification results with the optimal feature combination have a
95% recognition accuracy.
GPS based AVL Land-use classification The classification results also identified areas that transitioned from
one land-use class to another. These areas' dynamics of land-use class
transitions showed peculiar real-world social events.

The method described in this article uses telemetry from public vehicles
to find trends and provide accurate, real-time arrival time estimates at
any location along well-known routes. The outcomes show a convincing
forecast accuracy and are encouraging.

General Transit Feed Specification (GTFS)
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