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Abstract

This literature review investigates the dynamic environment of heat exchangers employed in engine cooling systems, exploring
advancements and innovations that have shaped the field. The increasing demand for enhanced engine performance, fuel efficiency,
and environmental sustainability has propelled research into heat exchanger technologies. The review encompasses a comprehensive
analysis of different types of heat exchangers, materials utilized, design considerations, and performance evaluations, with a keen
focus on their respective applications in engines and radiators. The various kinds of heat exchangers belong to the most important
themes, such as air-to-air, liquid-to-liquid, finned-tube, and plate heat exchangers, with a focus on their respective advantages,
drawbacks, and applications. Design considerations encompass size, shape, and configuration, addressing the factors influencing
design choices in modern engine cooling systems. A comprehensive evaluation of heat exchanger performance is carried out, taking
into account variables including energy consumption, pressure drop, and heat transfer efficiency. The review incorporates insights
from experimental methods and simulations used in assessing heat exchanger performance. Challenges in the field are discussed,
providing a nuanced understanding of current limitations, and potential areas for improvement are explored. The literature review
concludes with a synthesis of key findings, emphasizing the current state of knowledge in heat exchangers for engine cooling.
The abstract aims to provide a concise overview of the multifaceted aspects covered in the literature review, offering valuable insights
for researchers and engineers in the advancement of engine cooling systems.
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1 Introduction

In the field of automotive engineering, engine cooling
system dependability and efficiency are critical to ensur-
ing longevity and high efficiency (Elmaihy et al., 2023).
Unrecognized by these systems, heat exchangers can be
found in many different shapes, each with special ben-
efits. Their function in dissipating excess heat is cru-
cial, and they can use anything from conventional shell
and tube designs to cutting-edge plate heat exchang-
ers (Erek et al., 2005). Efforts in the past few years have
been grouped into two main areas: choosing the right
fluids for the supercritical Rankin cycle and improving
heat exchanger design. Studies in the field of optimizing
design include (Salmon et al., 2017; Hussein et al., 2014a;
Goudarzi and Keshtgar, 2017).

The engine cylinder produces hot gasses as a result of
the fuel and air being burned. The coolant in a car serves

as a conduit for heat transfer from the engine to the out-
side air. The engine cooling and exhaust gas systems
are the two main sources of heat energy in an automo-
bile, and they both transfer almost the same amount of
heat energy. The heat exchangers play a significant role
in cooling the engine, and numerous studies explore var-
ious techniques, such as design modifications and alter-
native fluids, that can potentially enhance the effi-
ciency of heat exchangers (Sadhasivam et al., 2021;
Hilo et al., 2018). Ikhtiar et al. (2023) explore the use of the
Lamella Heat Exchanger (LHE) to cool intake air for a 1.5-
liter naturally aspirated engine, addressing global warming
and air pollution. According to experimental research, the
LHE improves combustion efficiency, which lowers exhaust
pollutants and helps restore some lost engine power and
torque. This is accomplished through the use of recovered
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heat to warm the fuel or intake air, resulting in improved
fuel usage and more thorough combustion. Umirov and
Abdurokhmonov (2022) composed a piece that explains the
rationale for the fluid flow's aeration and potential direc-
tions for two-phase liquid flows, both horizontally and
vertically. Thermal efficiency is affected by the two-phase
flow's movement patterns and the structural makeup in the
radiator channels. The aeration of coolant in engine cooling
systems is influenced by design features, load, engine con-
ditions, and technical conditions. Two-phase flow structure
and movement in radiator channels affect thermal efficiency.
Lipnicky et al. (2023) investigated how coolant and radi-
ator mileage affect radiators' thermal-hydraulic properties.
Different heat exchange regions were found in two types of
car radiators. In terms of the number and placement of fans,
radiator II was better suited for the engine under investiga-
tion when compared to radiator I. Using the old radiator II,
it took 29 minutes and 30 seconds to heat the coolant until it
reached its operating temperature of T = 80.64 °C, with a
total mileage of 0 km. In addition, it only took five minutes
to cool down. Majmader and Hasan (2023) investigated in
a CFD research aiming at computationally evaluating the
hydrothermal behavior of a hot water radiator under geo-
metric change of the fin surfaces and addition of perfora-
tion to its heat transfer surfaces. The study revealed that
altering fin geometries increases the heat transfer rate by
up to 131%, perforating fins increases it up to 134%, and
radiation heat transfer surpasses convection heat transfer
by 60-180%. Lechowska and Guzik (2014) examined an
equation that represented unsteady heat transfer in spaces
with thin walls and sporadic heating. Each room's air capac-
ity and hot water radiator capacity were factored into the
air heat balance. The data showed reasonable agreement
between radiator water and internal air, with root mean
square errors for internal air and radiator water, which were
1.0K and 1.8K respectively suggesting a prior on-mode
switch for light structures. Buonomo et al. (2019) analyzed
the heat transfer and performance of an automotive radia-
tor using aluminum nanofluids as a coolant, revealing that
despite similarities with ethylene glycol/water (EG/W)
coolant, nanofluids consistently demonstrated a supe-
rior heat transfer rate, surpassing EG/W by 2%. However,
the performance index of nanofluids is smaller due to the
higher pumping power demand. The study Elsaid (2019)
examined the radiator's heat transfer efficiency and pressure
drop properties in a car in Cairo, in Egypt's climatic condi-
tions. When compared to alumina, cobalt oxide improves
heat exchanger efficiency and reduces energy consumption.

At higher concentrations, it raises the Nusselt number,
pump power, and performance index. An elevated tem-
perature of the nanofluid results in a higher Nusselt num-
ber. Furthermore, we may draw the conclusion that, under
the conditions examined, using nanofluids in car radiators
can help increase radiator performance since they enhance
heat transfer mechanisms, which in turn enhance engine
performance (Neves et al., 2022; Arora and Gupta, 2020).
Increasing efficiency in heat transfer studies involves inves-
tigating hybrid nanofluid combinations of two nanoparticle
types in a base fluid. This technique aims to enhance heat
transfer, showcasing potential advancements in efficiency
and performance (Allahyar et al., 2016; Xian et al., 2022;
Ahmed et al., 2018; Jibhakate et al., 2023).

This review delves into the diverse realm of heat
exchangers, examining efficiency factors and the intrigu-
ing domain of nanofluids. It offers insights into the evolv-
ing landscape of engine cooling technologies, analyz-
ing prior experimental and numerical studies to present
results that illuminate more efficient approaches for cool-
ing systems. As shown in Fig. 1, the number of publica-
tions on 'engine radiator' has steadily increased over the
years, highlighting growing research interest in this area.

2 Heat Exchangers (HXs)

Heat exchangers (HXs) are crucial in industrial fields, bal-
ancing surface area and pressure drop. They can be classi-
fied according to the transfer method, process nature, fluid
flow, and compactness. Compact HXs have a large heat
exchange surface per unit volume, making them popular
in the aerospace and aeronautical sectors due to their low
weight and high thermal efficiency (Careri et al., 2023).
In particular, this part focuses on types of heat exchang-
ers, as shown in Fig. 2, which represents the view of an
analyzed plate fin and tube heat exchanger.
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Fig. 2 View of an analyzed plate fin and tube heat exchanger
(Erek et al., 2005)

2.1 Radiators

With its crucial role in dissipating excess heat pro-
duced during engine operation, a radiator is a compo-
nent of the cooling system that is necessary for inter-
nal combustion engines. The radiator, which is usually
found at the front of a car, uses a system of tubes
and fins to help transfer heat from the engine cool-
ant to the air around it (Borrajo-Pelaez et al., 2010).
Radiators come in a variety of forms, from contemporary
aluminum constructions to conventional downflow and
crossflow designs. When the radiator is working, cool-
ant flows through it, and heat is transferred to the air as it
travels over the tubes, allowing the coolant to return to the
engine at a reduced temperature. Radiators are essential for
maintaining engine performance, preventing overheating,
and extending the life of the car.

2.1.1 Crossflow radiator

In car cooling systems, a particular type of radiator
called crossflow radiator is used, in which coolant passes
across the radiator core horizontally. These radiators,
which are identified by side-mounted tanks, allow cool-
ant to be distributed evenly. Coolant enters one tank and
leaves the other through tubes or fins that run horizontally.
This design ensures efficient heat dissipation by providing
a longer flow path, which increases efficiency. Crossflow
radiators are a popular option in many different types of
vehicles due to their high efficiency and small size, which
helps to regulate engine temperatures optimally and pre-
vent overheating (Batista et al., 2022; Colgan et al., 2024;
Gopinath and Poovazhagan., 2019).

2.1.2 Downflow radiator

A common radiator design used in automotive cooling
systems is the downflow radiator. Downflow radiators
have the coolant flowing vertically from the top to the
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bottom of the radiator core, in contrast to crossflow radi-
ators. In most cases, two tanks are located at the top and
bottom of the radiator in this design, through which cool-
ant enters, travels through the radiator core's tubes or fins,
and exits. When the coolant draws heat from the engine
and releases it into the surrounding air, the vertical flow
path facilitates effective heat exchange. Downflow radi-
ators are widely used in a variety of automobiles because
they provide an easy-to-use and efficient way to control
engine temperatures and avoid overheating. Their depend-
ability and ease of design make them a popular option for
automotive applications (Delgado et al., 2020).

2.1.3 Aluminum radiator

Aluminum radiators, widely used in automotive applica-
tions, are a contemporary and effective development in
cooling system technology. Because of its superior heat
conductivity and lightweight nature, aluminum is used
either entirely or predominantly in the construction of
these radiators. An aluminum radiator's core is composed
of aluminum alloy tubes and fins that efficiently trans-
fer heat. When compared to conventional radiators, the
use of aluminum reduces overall weight while improving
durability. In high-performance and race vehicles, where
effective heat dissipation is essential, this design is espe-
cially beneficial. Radiators made of aluminum are more
resistant to corrosion and can withstand a wide range of
operating environments. Their extensive use is indica-
tive of a dedication to maximizing engine cooling effi-
ciency and attaining improved thermal efficiency in a
range of automotive environments (Witry et al., 2005;
Strebkov et al., 2019; Palmer and Hindin. 1998).

2.2 Air Cooled Heat Exchangers (ACHE)

Air Cooled Heat Exchangers (ACHE) play a crucial role in
industrial environments by providing an effective means of
heat dissipation without relying on water-based cooling sys-
tems. In these systems, ambient air is utilized to cool equip-
ment or process fluids circulating through finned tubes.
The configurations, featuring forced and induced drafts,
enhance adaptability to spatial constraints, making ACHEs
widely utilized in sectors such as HVAC, power generation,
and petrochemicals. The importance of ACHEs lies in their
environmental compatibility, flexibility, and ease of mainte-
nance, especially in scenarios with limited water availabil-
ity (Wei et al., 2024). Within the broader context of ACHE,
specific components are examined: Axial flow fans, rec-
ognized for their efficiency and reduced noise levels, play
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a crucial role in industrial processes, cooling systems, and
ventilation, finding applications in electronic cooling sys-
tems, heat exchangers, and air conditioning units. Variations
like tube-axial and vane-axial fans cater to specific industry
needs (Czwielong et al., 2022). Multi-Fan Air Coolers, also
known as swamp coolers, serve as environmentally responsi-
ble and energy-efficient alternatives, effectively lowering air
temperatures through evaporative cooling in both commer-
cial and residential settings, particularly thriving in dry cli-
mates (Yan et al., 2024). Furthermore, Fin-Fan Air Coolers,
employed in industrial processes such as petrochemical,
power generation, and oil and gas sectors, dissipate heat
into the surrounding air to cool fluids. Their finned-tube
design enhances cooling efficiency, making them ideal
for dry or isolated areas where water usage is impractical
(Zhang et al., 2020). The widespread use of ACHEs is rooted
in their ability to offer efficient and adaptable heat dissipa-
tion solutions in diverse industrial applications.

3 Nano-fluids

Operating conditions, intended heat transfer character-
istics, and particular application requirements all play a
role in the choice of nanofluids used in engine radiators.
Engineered fluids called nanofluids are made with sus-
pended nanoparticles that are selected to improve ther-
mal conductivity and the efficiency of heat transfer.
The ability of the nanoparticles in nanofluids to dramat-
ically change important characteristics like thermal con-
ductivity gives them an advantage in efficiently dissipat-
ing heat. When selecting nanofluids for engine radiators,
considerations such as compatibility with radiator materi-
als, temperature stability, and the possibility of better cool-
ing performance are taken into account. To guarantee that
nanofluids continue to improve heat transfer in the radiator
system, routine maintenance and monitoring are necessary
(Sidik et al., 2015). Some of the experiments and studies on
using nanofluids in radiators are summarized in Table 1.

4 Discussions

It is vital to research the flow characteristics of the nano-
fluids in addition to their heat transfer performance in
order to use them in practical applications. More pump-
ing power is typically needed for nanofluids than for their
base fluid. An increase in the density of the working fluid
relative to pure water results from a rise in the volumet-
ric concentration of nanoparticles (¢), thereby indicating
a rise in energy consumption. Moreover, when operat-
ing conditions rise, there is a decrease in the mass flow of

refrigerant needed for engine cooling, which lowers the
need for pumps (Fig. 3). Because of their higher density,
it has been found that the addition of aluminum nanopar-
ticles causes a drop in coolant pressure.

Figs. 4 and 5 demonstrate how changing the fin geom-
etries for varying hot water flow rates affects the rate of
heat transfer. The area exposed to heat transfer determines
the rate of convective and radiation heat transfer. Because
it has a smaller surface area than the other four modifi-
cation cases, it has been discovered that the base radiator
case has the lowest rate of heat transfer. Radiation effects
show that the straight fin arrangement has the maximum
heat transfer rate (1672 W at 7 L/min) among all flow rate
scenarios, whereas the spike rib design has the lowest heat
transfer rate. Including convection, the straight fin config-
uration shows a 46% higher maximum heat transfer rate
than the semicircular fin arrangement.

Fig. 6 shows the cooling process with the fans switched
on for both the old and new radiator II. The new radiator II
finished in the shortest amount of time — 0 km of coolant
mileage while the previous radiator I took one minute to
complete. When radiators are operating, limescale and cor-
rosion build up, which decreases cooling effectiveness and
flow. The old radiator still does its job of cooling properly,
though. The longest cooling process was accomplished
using coolant mileages of 100,000 and 50,000 kilometers.

Fig. 7 illustrates the viscosity at various temperatures
using different TiO, volume concentrations (0.1, 0.2, and
0.3%) to investigate how temperature affects nanofluid
viscosity. It is evident that the viscosity of the nanofluid
decreases as the inlet temperature rises. Consequently, in
comparison to the base fluid, we may conclude that there is
a direct correlation between temperature and viscosity for
each study carried out under all circumstances.

The experimental thermal conductivity of the nanofluid
agrees well with published values (Ahmed et al., 2018;
Maxwell, 1873; Yu and Choi, 2003). Fig. 8 makes it abun-
dantly evident that for every unit increase in volume frac-
tion, thermal conductivity rises in a nearly linear fashion.
The relationship between volume concentration and ther-
mal conductivity is also depicted in the same figure.

The application of a helical coil with an aluminum-sil-
ver nanocomposite is the main topic of the study (Fig. 9).
The nanofluid concentrations in the nanocomposite vary
from 0.1 to 0.4 vol%, with 97.5% aluminum and 2.5% silver
making up its composition. The findings demonstrate that
rising Reynolds numbers and nanoparticle concentrations
are related to rising Nusselt numbers. Particle migration
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Table 1 Summary of experimental studies on radiators using nanofluids

Maximum HTC Flow Regime Nanofluid temperature Nanoparticle .
o . Nanofluid Researcher(s)
enhancement (Reynolds number) (°C) concentration
3.8% for 2 vol% of Turbulent 0
nanofluid (4,000-6,000) 70-95 2 vol% Cu/EG Leong et al. (2010)
45% for 1 vol% of Turbulent o Peyghambarzadeh
nanofluid (9,000-23,000) 3749 0.1 vol% AlOy/water etal. (2011)
9% for 0.65 vol% of . 0.15, 0.4, and 0.65 CuO/water Peyghambarzadeh
both nanofluids Laminar (50-1,000) 50,65 and 80 vol% and Fe,O,/water etal. (2013)
11% and 22.5% for :
. . . TiO,/water .
TiO,/water and SiO,/ Laminar (250-2,000) 60-80 1-2 vol% 2 Hussein et al. (2014b)
2 . 2 and SiO,/water
water, respectively 2
Al O,/EG-water
0, 0, 273
%‘?06 /l‘;::;j;?a:lv;;;?j Laminar (272-781) 80-95 0.5, 1.0, and 2.0 wt% (50:50) and Nich et al. (2014)
2 TiO,/EG-water (50:50)
17% decrement for Turbulent 0.05, 0.08 and 0.16 -
0.16 W% of nanofluid (22.000-50,000) 50, 60, 70 and 80 W% MWCNT/water Oliveira et al. (2017)
46.4% for 0.4 vol% of Turbulent 50-80 0.15,0.25 and 0.4 ZnO/(PG: Tejes and
nanofluid (11,000-30,000) vol% water::60:40) Appalanaidu (2017)
196.3% for 0.5 vol% Laminar; flow rate 2, N MWCNT/(EG*: ,
of nanofluid 4and 6L/ 80-120 0.1, 0.25, 0.5 vol % water::50:50) M'hamed et al. (2016)
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Fig. 3 Car radiator pumping power as a function of nanoparticle

concentration (Buonomo et al., 2019)
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Fig. 4 Plot of fin surface temperature for various fin geometries in

relation to water flow rate (Majmader and Hasan, 2023)

Fig. 5 Temperature contour of the fins of (a) semi-circle, (b) wavy,
(c) spike-rib, (d) cut-section, (e) straight fin arrangements
(Majmader and Hasan, 2023)
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and Brownian movement cause nanoparticles to disperse
and move proportionately near the pipe wall, which accel-
erates heat transmission. The boundary layer's thickness
decreases as a result of the helical coil's secondary flow and
centrifugal force. The helical coil's hybrid nanofluid accel-
erates heat transfer because of particle migration, Brownian
movement, and a decrease in boundary layer thickness.
Heat transfer is enhanced in proportion to the concen-
tration of nanoparticles. Nevertheless, as the Reynolds

number rises, the enhancement of heat transfer decreases.
For example, for Re = 5,000, the heat transfer enhance-
ment increases by 32.7% when the concentration of Al,O,
increases up to 10%, while for Re = 20,000, the growth
decreases slightly to 31.3%. The corresponding heat trans-
fer enhancement increases by 32.4% and 31.0%, respec-
tively, with increasing TiO, concentration. This may be
due to the fact that, as shown in Fig. 10, when the con-
centration of nanoparticles increases, the Nusselt num-
ber increases more for lower Reynolds numbers than for
higher Reynolds numbers.

4 Summary

The paper comprehensively examines heat exchange tech-
nologies, focusing on radiators, air-cooled heat exchang-
ers (ACHE), and the application of nanofluids. Radiators,
crucial in internal combustion engine cooling systems,
are explored in various designs, including crossflow and
downflow radiators, as well as contemporary aluminum
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Fig. 10 Heat transfer enhancement of (a) Al,O, nanoparticles,
and (b) TiO, nanoparticles at varying volume concentrations
(Neves et al., 2022)



radiators known for their light weight and superior heat
conductivity. The study extends to the industrial realm
with a detailed look at Air Cooled Heat Exchangers
(ACHE), utilizing axial flow fans, multi-fan air coolers,
and fin-fan air coolers, each catering to specific needs and
providing alternatives to water-based cooling systems.
Additionally, the paper introduces the innovative use of
nanofluids, engineered fluids with suspended nanoparti-
cles, demonstrating their potential to enhance heat trans-
fer efficiency and thermal conductivity in engine radi-
ators. The selection of nanofluids considers factors such
as compatibility, temperature stability, and the promise
of improved cooling performance. Emphasis is placed
on the importance of regular maintenance and monitor-
ing to ensure the sustained enhancement of heat transfer
efficiency in radiator systems. This comprehensive explo-
ration spans traditional and contemporary technologies,
offering insights into diverse applications across automo-
tive, industrial, and nanofluid domains.

The research emphasizes the importance of under-
standing the flow characteristics of nanofluids and their
impact on heat transfer performance for practical applica-
tions. Notably, the study reveals that nanofluids generally
require more pumping power compared to their base flu-
ids, and an increase in nanoparticle concentration results
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