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Abstract

The accurate quantification of concentration fluctuations is crucial when evaluating the exposure to toxic, infectious, reactive, 

flammable, or explosive substances, as well as for the estimation of odor nuisance. However, in the field of Computational Fluid 

Dynamics (CFD), the industry currently relies predominantly on steady-state RANS turbulence models for simulating near-field 

pollutant dispersion, which are only capable of producing the time-averaged concentration field. This paper presents a regression 

relationship for calculating the standard deviation of the local concentration based on the mean concentration and the downstream 

distance from a point source, over a city-like surface, in the case of the wind direction perpendicular to the streets. The desired peak 

values and other statistical characteristics can be predicted by assuming a gamma distribution which is fitted based on the average 

and standard deviation. To obtain the regression function, a deep neural network model was used. The model was trained using time-

resolved concentration data obtained from wind tunnel experiments. The validation results show that the concentration fluctuations 

predicted by the DNN-based model are in satisfactory agreement with the measurement data in terms of the skewness, the kurtosis, 

the median, and the peak concentrations. Furthermore, the present paper suggests a workflow for estimating the concentration 

fluctuations based on RANS CFD results, as well as recommendations for generating further training data for specific applications.
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1 Introduction
Outdoor air pollution poses a major health risk, and it is 
responsible for one in every nine deaths worldwide [1]. 
To assess the impact of air pollutants on the human body, 
so-called toxicity models were developed [2]. The most 
straightforward models assume a linear relationship 
between the received dose (i.e., the time integral of the 
concentration) and its effects, but more elaborate dose-tox-
icity models require the peak concentration values, which 
can be 10–1000 times higher than the mean [3], as well as 
time statistics, such as the probability of the concentra-
tion exceeding a specific threshold and the expected mean 
time above this threshold; therefore, knowing the time-av-
erage of the concentration is not enough. Moreover, it was 
reported by [4] that for the assessment of the exposure to 
infectious, reactive, flammable, or explosive substances, 
as well as for the estimation of odor nuisance, the magni-
tude of the concentration fluctuations is vital input data.

Computational urban dispersion studies, reviewed by 
[5–7], often utilize the Reynolds Averaged Navier-Stokes 
(RANS) approach for turbulence modeling. These simu-
lations can only provide the time-averaged wind veloc-
ity and pollutant concentration field – but in the matter 
of days or even hours. However, RANS simulations are 
unable to capture the key features of urban flows and near-
field dispersion, e.g., the unsteadiness of large-scale flow 
structures, and the anisotropy of turbulent scalar fluxes. 
On the other hand, scale-resolving turbulence models, 
such as Large Eddy Simulation (LES), can provide signifi-
cantly more accurate results compared to RANS regarding 
the mean concentration distribution [7, 8], with the addi-
tional benefit of the capability of predicting concentration 
fluctuations. The computational demand of scale resolv-
ing CFD simulations, however, can be higher than that of 
RANS calculations by two orders of magnitude.
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In spite of the rapid increase in computational resources 
and claims made in the past decades that LES would even-
tually render RANS obsolete, the RANS approach still 
remains widely used for simulating near-field pollutant 
dispersion in research and in the engineering practice as 
well [9], due to its robustness, its speed, and the availabil-
ity of Best Practice Guidelines, such as [10–13].

In recent years, artificial neural networks (ANNs) 
have been successfully implemented in many air pollu-
tion forecasting applications. The corresponding litera-
ture was reviewed by [14, 15], listing applications using 
different ANN types to predict either the mean value or 
a time series of the concentration (of COx , NOx , SO2 , O3 , 
as well as particulate matter) based on various meteoro-
logical parameters, including wind speed and direction, 
ambient pressure and temperature, relative humidity, solar 
radiation, rainfall, day of the week/month/year,  source 
intensity and concentration, as well as geometrical coor-
dinates. Numerous studies have shown that ANN models 
can be effectively used to define functional relationships 
between dependent and independent variables. A variant 
of ANNs, deep neural networks (DNNs), can be trained to 
accurately predict the complex relationship of numerous 
input parameters and the pollutant concentration via mul-
tiple hidden layers and can be applied to similar tasks to 
the ones listed above, as reported by [16, 17].

The present paper proposes a DNN-based regres-
sion function for predicting concentration fluctuations 
of locally emitted air pollutants. The streamwise dis-
tance from the source and the local mean concentration 
is the input part, and the measured concentration's stan-
dard deviation is the output part of the training dataset, 
which covers three urban-like surface structures with dif-
ferent variability of building height and building align-
ment. The wind direction is perpendicular to the streets 
in all cases. The model’s accuracy undergoes a meticulous 
quantitative analysis, with the derived regression function 
illustrated through graphical representations, facilitating 
a deeper understanding and application of the findings.

2 Methods
2.1 Building configurations
In the present paper, three periodically repeated building 
arrangements of equal total volume are employed to model 
the urban environment:

1.  Uniform street canyons (UC) of H/W = 1 height-to-
width aspect ratio, forming parallel streets perpen-
dicular to the wind direction.

2.  Aligned towers (AT): 1.5H and 0.5H tall building 
segments, forming street canyons of variable build-
ing height, with a full overlap of the tall building 
segments in streamwise direction.

3.  Staggered towers (ST) of 1.5H and 0.5H tall build-
ing segments, with no streamwise overlap of the tall 
buildings in consecutive rows.

The building configurations are depicted in Fig. 1. 
The reference building height is H = 100 [mm], the street 
width and the building breadth (in streamwise direction) 

Fig. 1 Periodic building arrangements used in the experiments. (The 
positions of the sampling points are denoted by black dots. The location 

and size of the sources are shown in yellow color in the 0th canyon.)
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is W = B = 100 [mm], and the lateral size of the tower seg-
ments is T = 208.33 [mm]. The building models were con-
structed considering a 1:200 model scale. As the streets 
were constructed perpendicular to the wind direction, 
the investigated scenario corresponds to the critical wind 
direction regarding ventilation.

2.2 Wind tunnel experiments
The dispersion of air pollutants was investigated via wind 
tunnel experiments. The experiments were carried out in 
the closed-circuit horizontal wind tunnel of the Theodore 
von Kármán Wind Tunnel Laboratory at the Department 
of Fluid Mechanics of the Budapest University of 
Technology and Economics (BME). The wind tunnel has 
a circular cross-section of 2.6 [m] diameter at the open test 
section of 3.8 [m] length, and it is equipped with a 2.5 [m] 
wide horizontal table (Fig. 2). 

The incoming flow was homogeneous with a low turbu-
lence intensity (<1%) thus the boundary layer could adapt 
to the building arrangements. The flow was neutrally strat-
ified, and it was found that the boundary layer over the 
buildings can be considered fully developed after 11 street 
canyons; thus, after that, it can be considered periodic. 
This canyon is labeled as the 0th (source) canyon from now 
on. Two identical tracer gas sources were flush mounted 
on the base plate of the model in the middle of the 0th can-
yon with a lateral offset of half a tower width, i.e., one of 
the sources was located downstream of a short (0.5H) and 
another downstream of a tall (1.5H) tower. The applied 
tracer gas representing traffic-induced air pollutants, or 
an accidental gas release was pure methane ( CH4 ), emit-
ted continuously from one of the two point-like sources 
at a time. The flow rate was controlled by pre-calibrated 
smart mass flow rate meters.

The concentration field was sampled in a total of 
1138 gauging points for the three building arrangements 
in total, illustrated in Fig. 1, using a Cambustion HFR400 
FFID (Fast Flame Ionization Detection) analyzer, for 
60–150 [s] in each measurement point, with a sampling 
frequency of 1000 [Hz] and a response time of 2.05 [ms], 
having a Δrel = 12% relative and Δabs = 0.28 c* absolute 
measurement uncertainty. The complete list of the mea-
surement instrumentation can be found in [18].

The voltage time signal produced by the FFID analyzer 
was first calibrated to obtain the tracer gas concentration 
(in part per million, ppm) using two calibration mixtures of 
known concentrations (100 ppm and 4950 ppm). The back-
ground concentration of the wind tunnel was also mea-
sured frequently along with the calibration of the device, 
with a maximum time interval of 30 minutes. The normal-
ized concentration time series were obtained as 

c t
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BG ref UC� � � � � � �
�

10
6

,
,  (1)

in which c* [-] is the normalized concentration, t [s] is time, 
c [ppm] is the measured concentration, cBG [ppm] is the 
mean wind tunnel background concentration correspond-
ing to the current measurement point, uref,UC = 4.74 [m/s] is 
the reference mean velocity (taken at z/H = 2 in the uniform 
canyons configuration), Q = 6.2 ∙ 10−6 … 6.9 ∙ 10−5 [m3/s] is 
the volume flow rate of the tracer gas, and A = 2 ∙ S ∙ T [m2] 
is the reference area (constant for all three geometries),  
in which S = 2H is the distance of two consecutive streets. 

As the approach flow velocity was identically 9 [m/s] 
for the three different geometries (UC, AT, ST), using the 
same velocity and area for normalizing the results for all of 
them allows a fair comparison of the resulting concentra-
tion fields, as this approach also includes the effect of sur-
face drag corresponding to the installation length used in the 
model: in the case of rougher surfaces – i.e. when roof height 
heterogeneity is present – a better mass transfer is achieved 
at the cost of a greater deceleration of the wind speed. Note 
that the normalized concentration results are also compen-
sated for the minor temporal changes in the bulk velocity.

2.3 Deep neural network (DNN)
A deep neural network (DNN) model was employed to 
investigate the correlation between the standard devia-
tion of the normalized tracer gas concentration ( c*

std ) and 
two input parameters: the normalized streamwise distance 
from the point source (x/H) and the mean normalized con-
centration ( c*

mean ). The density of the measurement grid Fig. 2 The staggered towers (ST) configuration in the wind tunnel
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was insufficient for the proper resolution of the concen-
tration distribution close to the source; thus the measure-
ment points closer than 0.7H to the active sources were 
removed from the training dataset, resulting in a remain-
der of 1015 sampling points with a maximum mean con-
centration of c* = 180.

The DNN, developed using the Keras Sequential 
framework, was structured with three internal layers, each 
housing 20 neurons and utilizing the LeakyReLU activa-
tion function (with α = 0.1 slope coefficient). A final output 
layer with linear activation was implemented to predict the 
target variable ( c*

std ). The network comprised 925 train-
able parameters and was optimized using the Adam opti-
mizer, minimizing the mean squared error (MSE) as the 
loss function. Using a learning rate of 0.001, the training 
process converged after 200 epochs.

2.4  Analytical estimation of the pointwise 
concentration probability distribution
The probability distribution of the concentration was mod-
eled with the gamma distribution, which is a widely used 
model for describing concentration fluctuations in near-
field pollutant dispersion studies; see [4].

In the present study, the parameters of the gamma dis-
tribution were determined based on the mean and standard 
deviation of the concentration. The mean value corre-
sponded to the measurement in all cases, and the standard 
deviation was either determined by the DNN model or – 
and as a reference – taken directly from the locally mea-
sured concentration time series.

The probability density function (PDF) of the gamma 
distribution is given by
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in which a [-] is the shape parameter, b [-] is the scale 
parameter, and Γ denotes the Gamma function. The shape 
and scale parameters are fitted based on the mean ( c*

mean ) 
and standard deviation ( c*

std ) of the normalized concentra-
tion using Eq. (3):
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3 Results and discussion
3.1 Measured concentration statistics
In this section, the characteristic vertical concentration pro-
files are presented (out of the 1138 measurement points) and 

both the near-field and the far-field results are discussed. 
The statistics of the pointwise concentration probability dis-
tribution are plotted in Fig. 3, from the source canyon (0th) 
and from the subsequent downstream (1st) street canyon.

For the uniform canyons (UC) case, the vertical mean 
concentration distribution is rather homogeneous at the 
middle of the canyon, above the source (x/H = 0) with 
a maximum at roof height, as the canyon vortex, the axis 
of which is horizontal, sweeps the pollutants towards the 
upstream building at street level, and then transports them 
vertically upwards near the wall. The location of the max-
imum standard deviations both in the source and the first 
downstream street canyon are closely linked to the location 
of the highest turbulence, i.e., the shear layer at roof height.

For the aligned and staggered tower arrangements 
(AT, ST), the maximum values of the mean concentrations 
exceed those of the UC case. In the source canyon, especially 
high mean concentrations can be observed near the sources, 
along with similarly high standard deviations. In the first 
downstream canyon, subjected only indirectly to the emis-
sion, the concentration distribution is more homogeneous 
compared to the UC case, indicating the presence of intense 
turbulence within the buildings (below 1.5H for the towers).

The skewness shows the asymmetry of the distribution, 
and the kurtosis is a good indicator of the "tailedness" of 
the distribution, i.e. how often outliers occur. Note that the 
symmetric Gaussian distribution has a skewness of 0 and a 
kurtosis 3, and the exponential distribution has a skewness 
of 2 and a kurtosis of 9. It can be observed in Fig. 3 that the 
highest values of these third and fourth central moments 
can be found in two locations: 

1. near the sources, where the plume meandering is 
dominant, and 

2. near the edges of the concentration plume. 

Both of these locations can be characterized by highly 
intermittent concentration-time signals, composed of fre-
quent near-zero elements and a few peaks that can be mul-
tiple orders of magnitude higher than the mean value. The 
lower (absolute) value of the skewness and the kurtosis 
suggest more symmetrical, normal-like distribution, char-
acterizing the inside of the plume, where the pollutants are 
more evenly mixed due to diffusion.

3.2 Model validation
The shape and scale parameters of the gamma distribu-
tion were calculated according to Eq. (3) based on two 
approaches:
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1. the measured concentration statistics ( c*
mean,WT , c*

std,WT ) 
as well as 

2. the combined output of the wind tunnel experiment 
and the DNN model ( c*

mean,WT , c*
std,DNN ). 

The resultant distributions were compared to the 
empirical statistical parameters in terms of the central 
moments, the median (50th percentile), and the represen-
tative minimum and maximum values (1st and 99th percen-
tiles; the rest were considered outliers). The performance 
metrics proposed by [19] were applied to all above quanti-
ties, which range over multiple orders of magnitude, thus, 
only the correlation coefficient (R, Eq. (4)), the factor of 
two of the observations (FAC2, Eq. (5)), the geometric 
mean bias (MG, Eq. (6)), and the geometric variance (VG, 
Eq. (7)) are representative for them among the metrics 
proposed in the original paper.
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In the above equations, P denotes the model predic-
tions, and O denotes the measurement results. Moreover, 
Ō and P̄  stand for the averages, while σO and σP repre-
sent the standard deviations, and n denotes the number of 
elements of the O and P data sets. Note that data points 
where the measured mean concentration was smaller than 

Fig. 3 Vertical profiles of the mean, the standard deviation, the skewness and the kurtosis of the pointwise concentration distributions, measured in the 
source (0th) and the subsequent downstream canyon (1st) for different geometries. (The total number of measurement points, including the ones in the 
present profiles, was 1138. Points in the close vicinity of the sources, here denoted by a grey area, were not used for the training of the DNN model.)
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the absolute measurement uncertainty (Δabs = 0.28c*) were 
removed prior to the performance analysis. The formulas 
for MG and VG accept positive values only, thus 20 further 
data points, which yielded negative skewness values had 
to be also removed before the calculation of the MG and 
VG metrics. (This way, 884 points were used to calculate 
the performance metrics, except for the skewness, from 
which an additional 20 points were removed.) The resul-
tant validation metrics are shown in Table 1.

Regarding the analytical gamma distribution estima-
tion, the perfect fit of the standard deviation is an inher-
ent feature of the fitting method. The correlation coeffi-
cient of the skewness and the kurtosis is 0.637 and 0.340, 
respectively; and it can be concluded that 86.1% and 
70.8% of the estimated skewness and kurtosis values fall 
into the range designated by the FAC2 metric. Both the 
third and fourth moments are underestimated (MG = 1.136 
and 1.310, see Fig. 4 for illustration), and one can observe 
a minor random error for the skewness and the kurtosis 
(VG = 1.364 and 1.768). It must be noted, however, that 
although, the fit of the estimated gamma distributions 
are not perfect, all validation metrics show values suffi-
ciently close to the targets for the 1st, 50th and 99th per-
centiles (R = 0.789 … 0.998, FAC2 = 0.919 … 0.993, 
MG = 0.960 … 1.132, VG = 1.041 … 1.150), suggesting 
that the concentration minima, the medians, and the max-
ima are all predicted with good accuracy.

About the DNN model, it must be noted firstly, that the 
standard deviations are predicted accurately (R = 0.945, 
FAC2 = 0.760), although, they are slightly overestimated 
(MG = 0.831), with a minor random error (VG = 1.362). 
To assess the propagation of the error of the fitting method 
using the mean and the standard deviation, the prediction 
accuracy for the skewness, the kurtosis as well as the per-
centiles must be assessed.

The correlation coefficients for the skewness and the 
kurtosis are R = 0.540 and 0.452, respectively, which are 
slightly smaller and larger than those of the analytical 
model. The skewness is predicted with reasonable accu-
racy, but it is overestimated by the DNN model, rather 
than underestimated, as shown in Fig. 4 (FAC2 = 0.781, 
MG = 0.949, VG = 1.599). Moreover, it can be seen that 
the prediction capability of the DNN model regard-
ing the kurtosis is on par with the analytical estima-
tion. It can also be concluded that the percentiles can 
be modeled with acceptable accuracy, as their metrics – 
apart from the weak correlation of the very small val-
ues of the 1st percentiles – show almost as good agree-
ment with the experimental data as those of the analytical 
estimates (R = 0.939 … 0.958, FAC2 = 0.800 … 0.958, 
MG = 0.980 … 1.136, VG = 1.138 … 1.323).

3.3 DNN-based concentration statistics
The DNN model can be utilized to calculate the standard 
deviation for any given streamwise coordinate and mean 
concentration data pair as long as the inputs are in the range 
of the corresponding training data. Fig. 5 shows the c*

std 
distribution for the valid input range of z/H = −0.5 … 12 
and c*

mean = 0 … 180.
As shown in the left-hand-side plot of Fig. 5, in the 

near-field, i.e., the 0th (source) canyon, the concentration 
fluctuations are almost linearly proportional to the mean 
concentration.

Since the mean concentrations generally decrease with 
increasing downstream distance (see the valid range in 
the middle plot of Fig. 5), the standard deviation in the 
far-field is more conveniently plotted as the function of 
x H c� � � �

mean
. The standard deviation displays monoto-

nous increase for each curve; with decreasing maximum 
values of c*

std with increasing distance from the source.

4 Conclusions and outlook
In this paper, a deep neural network-based method for 
predicting urban concentration fluctuations was demon-
strated. The DNN model takes the local mean concentra-
tion ( c*

mean ) and the streamwise position (x/H) as inputs 

Table 1 Performance metrics

Metric R FAC2 MG VG

Target 1 1 1 1

Standard deviation:

From c*
std,WT 1 1 1 1

From c*
std,DNN 0.945 0.760 0.831 1.362

Skewness:

From c*
std,WT 0.637 0.861 1.136 1.364

From c*
std,DNN 0.540 0.781 0.949 1.599

Kurtosis:

From c*
std,WT 0.340 0.708 1.310 1.768

From c*
std,DNN 0.452 0.624 1.057 2.175

Representative minimum (1st percentile):

From c*
std,WT 0.789 0.934 0.960 1.089

From c*
std,DNN 0.140 0.821 0.980 1.138

Median (50th percentile):

From c*
std,WT 0.990 0.919 1.132 1.150

From c*
std,DNN 0.958 0.800 1.136 1.323

Representative maximum (99th percentile):

From c*
std,WT 0.998 0.993 1.040 1.041

From c*
std,DNN 0.939 0.958 0.985 1.250
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and gives the local concentration standard deviation ( c*
std ) 

as output. It was shown that based on the mean and the 
DNN-predicted standard deviation, the pointwise concen-
tration probability distribution can be modeled with good 
accuracy using the gamma distribution (see Section 2.3 for 
the method and Table 1 for the performance metrics).

The presented method can be an effective addition to 
steady-state CFD models, such as the ones applying the 
industry standard RANS turbulence models, for forecast-
ing concentration fluctuations in a short time and with lim-
ited computational demands. To successfully predict the 
concentration peaks, the following workflow is proposed:

Fig. 5 Concentration fluctuation results predicted by the DNN model. (a) Standard deviation as the function of the mean concentration in the middle 
of the source canyon. (b) Standard deviation as the function of the streamwise coordinate and the mean concentration in the far-field. (c) Standard 

deviation as the function of the mean concentration and the streamwise coordinate, at the middle of the downstream street canyons. (The same curves 
are plotted in the middle diagram in black.)

(a) (b) (c)

Fig. 4 Scatter plots illustrating the correlation between the concentrations predicted by the analytical estimation and the wind tunnel results (purple 
triangles), as well as between the prediction of the deep neural network (DNN) and the wind tunnel results (orange circles).



Papp and Kristóf
Period. Polytech. Mech. Eng., 68(1), pp. 44–52, 2024|51

References
[1] World Health Organization "Ambient air pollution: A global 

assessment of exposure and burden of disease", World Health 
Organization, 2016. ISBN 9789241511353 [online] Available at: 
https://iris.who.int/handle/10665/250141 [Accessed: 01 December 
2023]

[2] Gunatilaka, A., Skvortsov, A., Gailis, R. "A review of toxic-
ity models for realistic atmospheric applications", Atmospheric 
Environment, 84, pp. 230–243, 2014.

 https://doi.org/10.1016/j.atmosenv.2013.11.051
[3] Gurka, R., Liberzon, A., Sarathi, P., Sullivan, P. J. "Diffusion of 

scalar concentration from localized sources in turbulent flows", 
Reviews in Chemical Engineering, 26(1–2), pp. 13–27, 2010.

 https://doi.org/10.1515/REVCE.2010.004
[4] Cassiani, M., Bertagni, M. B., Marro, M., Salizzoni, P. 

"Concentration fluctuations from localized atmospheric releases", 
Boundary-Layer Meteorology, 177(2), pp. 461–510, 2020.

 https://doi.org/10.1007/s10546-020-00547-4
[5] Lateb, M., Meroney, R. N., Yataghene, M., Fellouah, H., Saleh, F., 

Boufadel, M. C. "On the use of numerical modelling for near-
field pollutant dispersion in urban environments − A review", 
Environmental Pollution, 208, pp. 271–283, 2016.

 https://doi.org/10.1016/j.envpol.2015.07.039

[6] Tominaga, Y., Stathopoulos, T. "Ten questions concerning mod-
eling of near-field pollutant dispersion in the built environment", 
Building and Environment, 105, pp. 390–402, 2016. 

 https://doi.org/10.1016/j.buildenv.2016.06.027
[7] Toparlar, Y., Blocken, B., Maiheu, B., van Heijst, G. J. F. "A review 

on the CFD analysis of urban microclimate", Renewable and 
Sustainable Energy Reviews, 80, pp. 1613–1640, 2017.

 https://doi.org/10.1016/j.rser.2017.05.248
[8] Tominaga, Y., Stathopoulos, T. "CFD simulation of near-field pollut-

ant dispersion in the urban environment: A review of current model-
ing techniques", Atmospheric Environment, 79, pp. 716–730, 2013.

 https://doi.org/10.1016/j.atmosenv.2013.07.028
[9] Blocken, B. "LES over RANS in building simulation for out-

door and indoor applications: A foregone conclusion?", Building 
Simulation, 11(5), pp. 821–870, 2018. 

 https://doi.org/10.1007/s12273-018-0459-3
[10] Franke, J., Hellsten, A., Schlünzen, H., Carissimo, B. "Best prac-

tice guideline for the CFD simulation of flows in the urban environ-
ment", COST European Cooperation in Science and Technology, 
hal-04181390, 2007. [online] Available at: https://hal.science/hal-
04181390/document [Accessed: 01 December 2023]

1. Train a DNN model in advance, using concentration 
statistics of various building configurations, which 
are together representative of the investigated area.

2. Apply a steady-state CFD model to the specific 
geometry to obtain the mean normalized concentra-
tion distribution of the urban area.

3. The standard deviation of the concentration at a given 
location can be estimated based on its streamwise 
position and the local mean concentration.

4. The concentration fluctuations (skewness, kurtosis, 
median, peak) can be estimated by fitting a gamma 
distribution based on the CFD-generated mean value 
and the DNN-predicted standard deviation.

In order to train a DNN model capable of producing 
a representative function for predicting the concentra-
tion fluctuations, the desired training dataset must comply 
with the following recommendations:

• A sufficiently fine, evenly placed sampling grid 
must be applied, covering both the near-field and 
the far-field.

• A sufficient number of periodic geometries (in terms 
of type and parameter set) must be investigated to 
provide a sufficient estimation of the urban area. 
(See [20] for such examples.)

• Multiple wind directions representative of the mete-
orological conditions of the urban area must be 
investigated.

The measurement campaign used in the present study 
does not fully satisfy the above criteria, primarily due to 
being restricted to a single wind direction (normal to the 
axis of the streets). For the effective generation of training 
data, i.e., concentration time series or time statistics, the use 
of GPU-based Large Eddy Simulation can be recommended, 
as a significantly faster and cheaper, while reasonably accu-
rate alternative to field or wind tunnel measurements [21].
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