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Abstract

In this study the effect of heat treatment time was investigated in case of recrystallization of Al99.5 material samples. Two different 

type were manufactured based on the previously applied cold forming. 12% and 24% cold forming was applied to the samples before 

the heat treatment procedure, which was always at 570 °C and cooled in water. Six different heat treatment time were investigated, 

namely 5, 10, 30, 60, 120 and 240 minutes. After the recrystallization procedure the microstructure and the mechanical properties 

were determined. It was found that in the case of the 12% cold formed samples after 30-minute-long heat treatment there were still 

signs of the original microstructure, however it does not affect the mechanical properties. The yield strength and the ultimate tensile 

strength were independent of the heat treatment time; they were only dependent on the grain size which was expected. A strong 

dependency can be discovered between the elongation at break and the heat treatment time. A tangent hyperbolic function was fitted 

on the measured data, which showed that the asymptote was ~29% for both type of samples. This is a 25% increase compared to the 

5-minute-long heat treatment time samples, and this value was reached after ~120 minutes. Another result was that the elongation at 

break dependency on the grain size is decreasing with increasing heat treatment time.
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1 Introduction
Aluminum occupies an extremely important place in 
industry, as it is used in many places, so we can meet it 
in, for example, the automotive industry [1], the aviation 
industry  [2], the ship industry  [3] and the construction 
industry [4]. In the case of polycrystalline metals, includ-
ing aluminum, the size of the grains affects the mechanical 
properties [5] according to the Hall-Petch equation [6, 7]. 
This is particularly important, since nowadays there 
is increasing pressure in the industry to determine the 
mechanical properties of the given material or equipment 
from smaller and smaller test specimens. 

For these small test specimens, a new test type was 
developed, namely the small punch test which was later 
standardized [8]. During this measurement a disk with a 
diameter of 8  mm and a thickness of 0.5  mm is exam-
ined (Fig. 1)  [9]. The force – displacement curve is reg-
istered, and the mechanical properties of the samples 
are calculated from it  [10,  11]. The proof stress and the 
ultimate tensile strength can be estimated, but there are 

a few uncertainties with these calculations. Creep tests 
can also be done with this measurement setup at high 
temperatures [9].

Fig. 1 Schematic representation of the small punch test method 
adapted from [8]
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The reduction of the size of the test specimens has now 
reached the point where the traditional Hall-Petch relation is 
not valid [12, 13]. This is particularly important in the case 
of recrystallized aluminum specimens, as it is well known 
that coarse-grained recrystallization can occur (Fig. 2) [14].

During recrystallization, new, stress-free and uni-
form-sized (i.e., nearly the same size in all directions) 
grains are formed, which have low dislocation density and 
are characteristic of the pre-worked state. In other words, 
during recrystallization, the plastically deformed grains 
with a large excess of energy do not regain their origi-
nal state, but completely new, stress-free crystallites are 
formed. The driving force of recrystallization is actually 
the energy difference between the deformed and the newly 
formed grains [5, 14].

Commercially available aluminum, however, contains 
many impurities that greatly affect recrystallization [15, 16]. 
The main contaminants of commercially available 99.5% 
pure aluminum are iron and silicon. Iron is present as 
particles ranging from one micron to several microns, 
so it can act as a nucleation site during recrystallization. 
For example, Fe-FeO  [17], Fe-FesC  [18], Fe-Si  [19] and 
Al-Si-Cu [20] show such a nucleating property. In addition 
to the effect on the recrystallization temperature (or time), 
the increase in the number of nucleation sites can reduce 
the recrystallized grain size, which was observed in case 
of Fe-FeO [17], Fe-Si [19], Al-Fe [21] and Al-Si-Cu [20].

The investigation of the recrystallization behavior of 
cold-rolled aluminum has been a research topic for a long 
time  [22–24]. The mechanism of recrystallization can be 
inferred based on the recrystallization texture [25]. The ini-
tial grain structure significantly affects the recrystallization 
kinetics, as the preferential nucleation starts at the initial 

grain boundaries and the increase in the amount of stored 
energy accelerate the nucleation and growth rate, thereby 
reducing the recrystallization temperature or time [15].

Hansen and Jensen  [26] studied the deformation and 
recrystallization texture of commercial pure aluminum 
and found that the rate of texture development for coarse-
grained specimens was much lower at small to moderate 
deformations than for fine-grained specimens.

Zhang et al. [27] investigated AA 5182 aluminum alloy 
and investigated the effect of initial grain size on recrys-
tallization texture. In their research, they found that the 
fine-grained alloy recrystallized faster than the coarse-
grained alloy because the initial grain boundaries were 
favored nucleation sites. In addition, they found that 
the inhomogeneous distribution of nuclei in the coarse-
grained alloy led not only to a slow decrease in yield 
strength and ultimate tensile strength with increasing 
annealing temperature, but also to significant inhomoge-
neity of the recrystallized grains.

Vandermeer and Jensen  [16] studied the isothermal 
recrystallization of 90% cold-rolled commercial purity 
AA1050 aluminum alloy and found that the recrystalliza-
tion was growth (boundary migration rate) controlled.

During recrystallization, heat treatment parameters also 
play a decisive role [28–32]. Zhao et al. [33] studied cold-
rolled 98% pure aluminum and found that for the ultrafast 
annealing – only 1 s annealing time – the temperature should 
be in the range of 410 °C to 435 °C to optimize the mechani-
cal performance of commercial pure aluminum (Fig. 3). 

Since our long-term goal is to be able to produce 
coarse-grained specimens with only a few grains in the 
examined cross-section, our goal in this article is to find 

Fig. 2 Recrystallized grain size of the alloy and composite as a function 
of strain adapted from [14] (Redrawn by Varga and Szlancsik)

Fig. 3 Mechanical properties of cold-rolled aluminum after ultra-fast 
annealing at different annealing temperatures [33]
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the optimal heat treatment parameters for commercially 
available aluminum (Al99.5) with which recrystallization 
can be performed.

2 Materials and methods
During our experiments, an Al99.5 strip was used, the 
width of which was 10  mm, while the thickness was 
1 mm. As a first step, annealing was done at 570  °C for 
1 hour, as these strips were made by cold forming, so their 
formability has already been significantly reduced. After 
annealing, the samples were deformed by 12% and 24% 
with an  Instron 5965 electromechanical universal mate-
rial testing machine. Uniaxial tension was used, and then 
subjected the specimens to recrystallizing heat treatment. 
In all cases, the heat treatment was carried out at 570 °C 
and cooled in water, however, the time of the heat treat-
ment was changed, in order to determine the optimal time 
at which the recrystallization has taken place completely 
and the residual stresses and dislocation density are also 
reduced. To this end, six different time length was exam-
ined, with 3 samples for every type, the notations for which 
are listed in Table  1. Also a reference sample type was 
manufactured without the recrystallization heat treatment.

After the heat treatment, tensile test specimens were 
machined from the strips, the cross-section of which was 
5  ×  1  mm. The samples have been etched with alumi-
num macro-etching solution, the composition of which is 
included in Table 2.

After etching, the resulting grain structure was exam-
ined with an Olympus SZX16 stereomicroscope. After 
that, tensile tests were performed on the samples at 

a crosshead speed of 3 mm/min with the Instron 5965 elec-
tromechanical universal material testing machine. During 
the measurement, the force - displacement diagram was 
registered, from which the engineering stress - engineer-
ing strain diagram was calculated. Using these data, the 
yield strength ( Rp0.2 ), the ultimate tensile strength ( Rm ) 
and the elongation at break (A) were determined.

3 Results and discussion
3.1 Microstructure
After the heat treatment and etching, the resulting micro-
structure was examined (Figs. 4 and 5). 

As shown in Figs. 4 and 5, in the case of the 12% cold 
formed samples 30-minute-long heat treatment was not suffi-
cient for the complete recrystallization to take place, because 
traces of the original microstructure still can be seen, however 
in the case of the 24% cold formed samples only 5 minutes 
were enough to complete the recrystallization. Based on these 
pictures, it can be concluded that the heat treatment time has 
to be chosen depending on the previously done cold form-
ing processes to achieve full recrystallization. The resulting 
grain sizes are 610 ± 165 µm and 238 ± 28 µm in case of the 
12% and 24% cold formed samples respectively for every 
heat treatment time (Fig. 6). The grain sizes were determined 
based on the stereomicroscopic pictures; the average value 
was calculated for at least 10 grains in a sample. The origi-
nal grains are located inside a grain – not in the boundary – 
which is marked with red circles in Fig. 5.

In Figs. 5 and 6 it can be seen that there are no signs of 
grain coarsening. It is important, because one can assume 
that after 240  minutes, grain coarsening will be signifi-
cant, but the size of the grains did not change during the 
investigated heat treatment times of the tests.

Table 1 The name of the samples with the heat treatment parameters

Name
Cold 

forming 
(%)

Heat 
treatment 
time (min)

Name
Cold 

forming 
(%)

Heat 
treatment 
time (min)

O12 12 0 O24 24 0

R12-5 12 5 R24-5 24 5

R12-10 12 10 R24-10 24 10

R12-20 12 30 R24-20 24 30

R12-60 12 60 R24-60 24 60

R12-120 12 120 R24-120 24 120

R12-240 12 240 R24-240 24 240

Table 2 Composition of the aluminum macro-etching solution

Component Ratio (%)

Distilled water 18

Nitric acid 16

Hydrofluoric acid 16

Hydrochloric acid (37%) 50
Fig. 4 Original microstructure of the samples (before cold forming 

and recrystallization)
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3.2 Mechanical properties
The results obtained from the tensile tests are summarized 
in the diagrams shown in Figs. 7–9.

As expected, the yield strength of the material depends 
on the grain size of the samples, however there are no 
signs of grain coarsening which is why the values remain 
almost the same. It can be stated that the heat treatment 
time – from 5 minutes to 240 minutes – does not affect 
the yield strength. In case of the 12% cold formed sam-
ples there are no signs of the traces of the original grain 

structure – which was observed in Fig.  5 – because the 
yield strength does not decrease significantly. This sug-
gests that the residual stresses completely gone and the 
dislocation density is very low after only 5 minutes, but 
grain structure can vary during the heat treatment process.

The ultimate tensile strength depends on the cold form-
ing; however, this dependence is not as significant as 
in case of the yield strength. The difference was determined 
for every heat treatment time separately then the average 
value was calculated. In this case the difference between 

Fig. 5 Microstructure of the 12% cold formed samples after (a) 5 min, (b) 30 min and (c) 240 min with the traces of the original microstructure 
(red circles), and also the microstructure of the 24% cold formed samples after (d) 5 min, (e) 30 min and (f) 240 min

Fig. 6 Grain size after recrystallization as a function of heat treatment 
time in case of 12% (R12) and 24% (R24) cold formed samples

Fig. 7 Yield strength as a function of heat treatment time in case of 12% 
(R12) and 24% (R24) cold formed samples
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the two sample types is only 4.1% while in case of the yield 
strength the difference is 37.4%. It can be also seen that 
the heat treatment time does not affect the ultimate tensile 
strength, which also supports the statement that there is no 
grain coarsening during these heat treatments.

The elongation at break depends on the cold forming; 
however, this dependence disappears for longer heat treat-
ment times. Also as it was expected, without heat treatment 
this value is really low, and the difference between the two 
sample types is 12%. The elongation at break has a signif-
icant dependence on the heat treatment time. As it can be 
seen in Fig. 8 the two data sets are overlapping and a curve 
can be fitted on them in the following form (Eq. (1)):

A a b c t� � � �� �tanh 	 (1)

where A – elongation at break, a, b and c – parameters 
and t – heat treatment time. The asymptote value for both 
cases is ~29%, which is a 25% increase compared to the 
5-minute-long heat-treated samples.

This increase is important because the yield strength 
and ultimate tensile strength did not change significantly 
during the 240-minute-long heat treatment process, but 
the elongation at break did, so the material's mechanical 
properties were improved. This means a tougher material 
was manufactured with the same strength, which usually 
not the case, because with higher toughness the strength 
of the material is decreasing. With these properties this 
material is more suitable for cold forming applications 
like deep drawing.

4 Conclusion
Two different previously cold formed (12% and 24%) sam-
ple types from Al99.5 were heat treated with different heat 
treatment times. The following conclusions can be drawn 
based on the microstructure and the tensile test results.

•	 There were no signs of grain coarsening after 
240 minutes at 570 °C.

•	 The yield strength and the ultimate tensile strength 
depend on the grain size; however, they do not 
depend on heat treatment time within the examined 
range.

•	 The elongation at break does not depend on the grain 
size; however, it is strongly dependent on the heat 
treatment time. This dependency can be described 
with a tangent hyperbolic function. The asymp-
tote value was ~29% for both cases which is a 25% 
increase compared to the 5-minute-long heat-treated 
samples. This value is reached after ~120 minutes. 

•	 The optimal heat treatment time is 120  minutes at 
570 °C.
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Fig. 8 Ultimate tensile strength as a function of heat treatment time 
in case of 12% (R12) and 24% (R24) cold formed samples

Fig. 9 Elongation at break as a function of heat treatment time in case 
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