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Abstract

Nowadays, Industry 4.0 and the Smart Manufacturing environment are increasingly taking advantage of Artificial Intelligence. There are 

more and more sensors, cameras, vision systems and barcodes in the production area, as a result of which the volume of data recorded 

during manufacturing and assembly operations is growing extremely fast. The interpretation and processing of such production-type 

data by humans is no longer possible effectively. In the Big Data domain, machine learning is playing an increasingly important role 

within data mining. This paper focuses on the product change processes of semi-automatic assembly line batch production and 

examines the impact of product type changes on the Overall Equipment Effectiveness (OEE) and attempts to determine future values 

through supervised machine learning. Using decision tree technology, the effect on the OEE value can be predicted with an accuracy of 

up to 1%. The presented data and conclusions come from a real industrial environment, so the obtained results are proven in practice.
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1 Introduction
In order to plan the assembly sequence of products prop-
erly and to use the available resources in the right way, 
it is necessary to know the efficiency of the production 
units. It  is advisable to predict the change in efficiency, 
which can move in either a negative or positive direc-
tion in addition to the stagnant situation, because these 
have an impact on the financial profitability of the fac-
tory. Higher efficiency requires less manpower, less man-
power generates lower costs (e.g., variable costs, etc.). 
Overall Equipment Effectiveness (OEE) is the most com-
mon efficiency Key Performance Indicator (KPI) in indus-
trial practice today [1]. OEE, as a standard and best prac-
tice indicator, also includes downtime spent on product 
changes during manufacturing and assembly [2]. Despite 
Single Minute Exchange of Die (SMED), One Minute Ex- 
change of Die (OMED) and One Touch Exchange of Die 
(OTED) used in day-to-day practice, the number and dura-
tion of changeover in batch-type assembly is still signifi-
cant. These widely used methods analyze and optimize the 
process of product changes even during assembly opera-
tion in the case of tool changes. Therefore, it is important 
to predict future OEE values as accurately as possible.

The paper is organized as follows. Section 2 focuses on 
the relevant scientific work regarding to machine learn-
ing and OEE. Following, Section 3 revealed decision tree 
technology as applied machine learning with industrial 
prediction example. Section 4 concludes the paper.

2 Machine learning and OEE
Artificial Intelligence (AI) encompasses machine learning 
which can support the predictive analytics in exploiting hid-
den correlations and make estimation [3]. Machine learning 
methods are used in industrial manufacturing applications, 
process characterization, fault detection, quality improve-
ment, predictive maintenance, decision support system and 
production scheduling [4–7]. When industrial data is pro-
cessed, data preparation and cleaning are essential.

2.1 Applied machine learning methods
There are numerous machine learning methods among 
others regression, clustering and decision tree, regulariza- 
tion, rule system, dimensionality reduction, Bayesian, en- 
semble, neural networks and deep learning. Within the 
decision tree algorithms there are also several methods 
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such as classification and regression tree, iterative dichot-
omiser, C4.5, C5.0, Chi-squared automatic interaction de- 
tection, conditional decision tree, etc. [8–12]. Machine 
learning algorithms can be divided into three categories: 
supervised learning, unsupervised learning and reinforce-
ment learning [13]. All these types can be used for predic-
tion in manufacturing and assembly domain [14].

Brunelli et al. proposed a deep learning-based approach 
for predicting future values of production performance. 
Temporal Convolutional Network (TCN) and Long Short 
Term Memory (LSTM) model were applied for forecast-
ing [15].

Hassani et al. used different machine learning tools such as 
Support Vector Machine (SVM), Random Forest, XGBoost 
and deep learning to predict OEE percentages. They con-
ducted that deep learning and random forest with cross val-
idation were the best reliable methods [16]. Acosta  et  al. 
proposed a Derivative Integral Proportional PID machine 
learning algorithm with SVM for optimization of OEE [17].

Engelmann et al. compared ensemble classifier, SVM, 
naive Bayes, R and decision tree algorithms for change-
over process. According to their work the fine tree algo-
rithm reached 92.8% accuracy during the test period [18].

2.2 OEE and type change at the assembly lines
An important feature of assembly lines is that they are gen-
erally able to assemble multiple types of products from the 
same product family by making minor modifications to the 
line. Flexible and reconfigurable assembly systems operate 
at high level of customization [19, 20]. Various systems, 
among others Manufacturing Execution System (MES) 
and Enterprise Resource Planning (ERP), provide assis-
tance in the automatic collection and storage of OEE val-
ues in the assembly lines of industrial companies [21–23].

All manufacturers are working to reduce product 
change durations with the help of numerous lean meth-
ods, including Singe Minute Exchange of Die (SMED), 
One Minute Exchange of Die (OMED) and One Touch 
Exchange of Die (OTED) [24–27]. However, even so, the 
duration of product type changes can range from a few 
seconds to several hours. Short-term changeovers require 
minor changes, while long-term changeovers (which usu-
ally occur only a few times a month) require major adjust-
ment (e.g., pallet changes, workstations switching on, etc.). 
No matter how long the change of type lasts, it always 
results in a proportional decrease in the OEE values.

OEE as a part of Total Productive Maintenance (TPM) 
concept is calculated as follows:

OEE = a p q, 	 (1)

where a is the availability [%], p is the performance [%], 
q is the quality [%] [28].

The effects of product type change examined in this 
article occur within the OEE in the availability and qual-
ity. The extent of the negative impact does not depend on 
the number of product changes, but on the length. Product 
changes are in most cases the result of planned activities, 
while to a lesser extent they are the result of some kind of dis-
turbance (e.g., material shortage, material quality problem, 
urgent sales order, etc.). The planned changeover means:

•	 it starts at a specific time or at short intervals;
•	 it takes place in a given time;
•	 the assembly of a given product is completed and 

after adjustment, the assembly of another specified 
product begins;

•	 the product change process also includes inspec-
tions and documentation for both the product and the 
machines or stations;

•	 scrap may occur as a result of the setting operation.

There are plenty of articles in the scientific literature 
on how to increasing OEE using different methods, how-
ever, there are only a few analyses of the impact of product 
changes. Haddad et al. implemented SMED at an alumi-
num and profile company and reached 4.86% availabil-
ity increasement while OEE is boosted by 3.26%. [29]. 
Anusha and Umasankar worked out a framework for major 
factors affecting the OEE and based on these data they 
developed a model for OEE prediction [30]. According to 
Backus et al. knowledge of cycle time is essential for esti-
mating OEE, hence they used a data mining approach to 
predict cycle time and WIP [31].

3 Decision tree as the applied machine learning
Illustrated through a real industry example in Section 3, 
the decision tree is used as a classification method within 
supervised machine learning.

The analyzed automotive semi-automatic assembly 
line assembles twelve types of seat structure products in 
batches of 800–1200 pieces. The planned takt time (TT) 
is twenty seconds, so the expected number of products in 
one shift (eight hours) is 1350 pieces. Hence, there are 1 or 
2 type changes per shifts. From an operational point of 
view, product changes can be divided into two types:

•	 minor type change – category "A" (adjustment oper-
ations can be performed quickly, no pallet change, 
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raw material loading is fast and less), planned dura-
tion is 7 minutes;

•	 major type change – category "B" (adjustment opera-
tions takes longer, palettes are changed, material load-
ing is slower and more), planned duration is 15 minutes.

Changes for different types can be described in a ma- 
trix (Fig. 1). This matrix is a key for assembly planning, 
because it is possible to determine the production sequence 
and the raw material and semi-finished product needed 
more accurately in time.

3.1 Decision tree for prediction
Based on the takt time (TT) data in main focus for each 
product that can be queried from the Manufacturing Ex- 
ecution System (MES) and SQL data base systems, a deci-
sion tree can be set up to distinguish between the normal 
manufacturing process and the type change. With this clas-
sification, the normal assembly process and the micro stops 
are not separated. In the case of type changes, based on the 
decision tree, the two different types of changes can be dis-
tinguished, and both successful and unsuccessful changes 
can be distinguished on the basis of the takt time. In addi-
tion, downtime is also classifiable. The complete decision 
tree is shown in Fig. 2.

With the support of the decision tree and the available 
past time data, the time of type changes can be easily clas-
sifiable and the exact changeover time can be determined.

3.2 Prediction based on decision tree
In this article, only the OEE value associated with product 
changes is examined. In order to predict negative changes 
in the OEE value, it is necessary to take into account the 
effect of a one-minute loss of assembly for any reason on 
the OEE value of a given shift (480 minutes):

�OEE � �
1

480
0 2083. %. 	 (2)

Based on these, planning "A" type changeover per shift 
for the planned time (7 min) reduces the OEE value by 
1.45% while a "B" type changeover (15 min) reduces the 
OEE value by 3.12%. In the following, based on the one-
year data of the examined semi-automatic assembly line, 
the average type change time of the two categories was ana-
lyzed and classified according to the decision tree. With the 
forecasting support of Excel, the values obtained were used 
to predict the average type change duration for the next two 
months, taking into account the seasonal values. For pre-
diction the exponential smoothing forecasting based on the 
AAA (additive error, additive trend and additive seasonality) 
of the Exponential Triple Smoothing (ETS) algorithm was 
used. Fig. 3. shows the predicted data and trend for minor 
type changes (category "A") and Fig. 4 shows the predicted 
data and trend for the major type changes (category "B"). 
In addition to the direction of the trend, the values obtained 

Fig. 1 Type change matrix for planning

Fig. 2 Decision tree for type change

Fig. 3 Prediction of type change duration "A" category
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were also important. The authors are aware of a number of 
data analysis and forecasting applications, software exists 
(e.g., R, Rapidminer, Matlab, Python, GMDH Shell, etc.), 
but the goal was to demonstrate the forecasting capabilities 
in a clear and understandable way, and the focus is on the 
method rather than the details of the algorithm used.

Based on the average values obtained, the percentage 
of OEE will decrease by type change according to Table 1.

After the prediction, in reality it was confirmed that the 
forecast was correct and the extent of the deviation was 
considered acceptable. The real values and trend of both 
minor and major type change together with the forecasted 
values are shown in Fig. 5.

Based on the validation results the following statements 
can be made:

•	 in both cases (minor and major type changes) the 
trends were based on the prediction;

•	 decrease in OEE value within one month with a devi-
ation of 0.2%, within two months maximum  with 
a deviation of 0.9% can be predicted;

•	 major type changes (category "B") are most difficult 
to predict in the longer term;

•	 classification of the two types of product changes 
based on the decision tree is correct (two categories 
and the planned and real time of the changeover).

The predicted and the validated data for the 2 months 
are shown in Table 2.

Based on the results, it can be concluded that the deci-
sion tree in the assembly area was constructed correctly 
and the forecast used was also successful. The forecast 
can be examined in more depth, taking into account not 
only the duration of the transitions but also the number of 
transitions. However, this will be proportionate to the data 
obtained previously.

4 Conclusion
Predicting future Overall Equipment Effectiveness (OEE) 
values of semi-automatic assembly lines is essential for 
resource planning and proper use. In this article, one of 
the methods of supervised machine learning, the decision 
tree, was used to classify the types of product changes and 
then a two-month forecast was made for them. The fore-
cast was compared with subsequent real data and based on 
the results it can be concluded that it is possible to predict 
the impact of product type changes on OEE with an accu-
racy of less than 1%. Further research area could be the 
application of machine learning to predict OEE values for 
the occurrence of machine errors and material shortages.

Fig. 4 Prediction of type change duration “B” category

Table 1 Type change effect on OEE

Type change 
catergory

Prediction

Average time of type 
change [min] Effect on OEE [%]

Next 
month

Next second 
month

Next 
month

Next second 
month

A 04:20 06:21 −0.90 −1.32

B 19:35 17:56 −4.08 −3.74

Fig. 5 Validation of predictions

Table 2 Comparison of prediction and validation

Type change 
catergory

Prediction Validation

Average time of type 
change [min] Effect on OEE [%]

Next 
month

Next second 
month

Next 
month

Next second 
month

A 04:20 06:21 −1.09 −1.41

B 19:35 17:56 −3.80 −2.84
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