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Abstract

The aim of this study is to examine displacements, strains and stresses as well as to predict possible failure mechanisms arising at 

the yarn-matrix level of a test specimen of a railway composite cord-rubber air brake tube undergoing uniaxial tension by microscale 

modelling.

Furthermore, this paper also aims to verify the material properties of the micromodel of the test specimen.

The micromodel is based on macromodels (by matching the boundary conditions of the micromodels with displacements of the 

macromodels) created previously by authors of this article. The reinforcing yarns are described by an orthotropic, elastic material 

model, whereas the matrix has been described by a 2 parameter Mooney-Rivlin model, which all have been validated before by a 

uniaxial tensile test and a three-point bending test.

Force-displacement curves of the micromodel and experimental results show a considerably good agreement.

Yarns have a less dominant role in the load transfer mechanism of the reinforcement layers, because of the short-yarn reinforced 

nature of the specimen. Shear strains are high at free yarn ends marking the possible locations of failure initiation in debonding in the 

shear mechanism of the reinforcement layers. High shear strain values imply that the dominant mode of load transfer is shear in the 

matrix in the reinforcement layers.
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1 Introduction
Composite tubes are widely used in engineering applica-
tions because of their high strength-to-weight and stiffness-
to-weight ratios [1]. The most widely used manufacturing 
process of cord-rubber tubes is filament-winding because 
of high fiber precision, and being well-suited to automa-
tion [2]. During operation, composite tubes are most fre-
quently subjected to biaxial tension (when uniaxial ten-
sion is combined with internal pressure) [3], and bending, 
e.g. during braking [4]. The orientation angle of composite 
reinforcement layers is ± 55° in most cases because it is the 
most beneficial in case of biaxial tension [5].

In engineering practice, composites are most fre-
quently modelled as orthotropic laminates with so-called 
'smeared' (homogenized or averaged) material properties 
considered at macroscale. These models are useful for the 
overall mechanical characterization of a composite struc-
ture with a significant reduction in computational time and 

modelling time, however, they approximate internal struc-
tural response (e.g. pointwise stress distribution) of com-
posite layers inaccurately [6].

In order to gain more accurate pointwise results, micro-
models are most oftenly used, which represent a smaller 
segment of a composite. Displacement coupling technique 
(also known as 'submodeling') plays an important role in 
the definition of the boundary conditions of a micromodel 
by matching the displacements of the boundaries of the 
micromodel with the nodal displacements arising on the 
same surfaces in the macromodel [7].

Several examples of the utilization of micromodels are 
presented below. Violeau et al. [8] have dealt with dam-
age mechanisms in laminated composites by a hybrid 
strategy (with predefined cracks) regarding three differ-
ent load cases: transverse loading and shear loading on 
cross-ply laminates, and a dual notch sample subjected to 
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longitudinal strain. They examined the degradation pat-
terns and crack propagation mechanisms in each case.

Llorca et al. [9] have performed multiscale virtual tests 
on various composite structures. They firstly determined 
matrix and interface mechanical properties in situ at the 
micrometer range, then created a structure of simulations 
taking into account deformation and failure mechanisms 
at different length scales. They proposed the extension of 
their strategy by also including functional properties com-
puted by means of molecular dynamics.

Arteiro et al. [10] have predicted failure of composite 
laminates at micro-, meso- and macrolevels. They anal-
ysed ply thickness effects and predicted in-situ strengths 
at microscale level. At structural level, strength has been 
determined by the use of analytical and computational 
fracture approaches. They found that computational 
mechanics models are appropriate for the prediction of 
failure and strength, while at structural level, analytical 
Finite Fracture Mechanics models yield better results in 
the assessment of brittle fracture.

A special case of micromodels is the 'unit cell' type, 
which is a square or hexagonal periodical representative 
volume element, the smallest segment over which a mea-
surement can be made that will yield a value representative 
of the structure. Xu et al. [11] have developed a macro-meso 
unit cell model combined with the shell-core structural fea-
ture of 3D braided composites. They predicted the elastic 
constants and micromechanical response. The effects of the 
braiding angle and the fiber volume fraction of specimens 
on the elastic properties have been discussed extensively.

Zhang et al. [12] have established a 3D FE mesoscale 
progressive damage model of a single-layer triaxially 
braided composite based on the Murakami-Ohno damage 
theory to analyse damage initiation and progression in fiber 
tows. Damage development of fiber tows and interlaminar 
delamination damage of interface have been analysed.

Li et al. [13] have created a a dense but non-intersecting 
geometry internal unit cell model of 3D five-directional 
braided composites based on microscopic observations and 
predicted the effective elastic constants of 3D five-direc-
tional braided composites. Their model was proven to be 
more effective to calculate the mechanical properties of 3D 
five-directional braided composites with more than 50% 
fiber volume fraction compared to existing FE models.

Present authors developed a numerical technique previ-
ously for macromechanical analysis of a filament-wound 
cord-rubber composite test specimen subjected to uniax-
ial tension [14].

In this study, the uniaxial tension process of the test 
specimen is further investigated by a micromechanical 
approach in order to examine the mechanical behaviour of 
composite layers.

2 Materials and methods
2.1 Uniaxial tensile test
The standard test specimen has been subjected to uniaxial 
tension in a previous study [14].

An illustration of the tensile test of the standard test 
specimen can be seen in Fig. 1 at the moment when the 
upper tensile jaws have travelled 19 mm. Uniaxial ten-
sion has been carried out in accordance with standard 
ASTM D638 with a prescribed displacement of 25 mm at 
a tensile speed of 2 mm/min on a Zwick Z250 tensile test 
machine. This tensile speed ensures that time-dependent 
behavior is avoided during the test. Fig. 1 shows signs of 
yarn-matrix debonding within layers (seen as gaps across 
the reinforcement layers) at a displacement of 19 mm.

2.2 FE macromodel
In Section 2.2, the FE macromodel of the standard test 
specimen is reviewed [14], on which the current micro-
model is based on.

Cross-section of the composite tube can be viewed in 
Fig. 2. The inner diameter of the tube is 28 mm, its outer 
diameter is 44 mm, the thickness of the rubber liners 
is 2.4  mm. The material coordinate system of the rein-
forcement layers is cylindrical, the layup is balanced, 
[+55°/−55°/+55°/−55]. 

The test specimen has been cut from the tube through its 
whole thickness, so thickness of the test specimen is 8 mm.

Fig. 1 Uniaxial tensile test of 
standard test specimen with 

clearances illustrating debonding at 
a displacement of 19 mm [14] © 2017 
by authors and Scientific Research 

Publishing Inc.
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In the FE macromodel, material model of reinforce-
ment layers is transversely isotropic, material proper-
ties of the composite layers have been calculated based 
on rules of mixture [10] and material properties of the 
components (from material data sheets). Material prop-
erties of reinforcement layers are as follows: modulus 
of elasticity of fibre is Ef  =  2961 MPa, Poisson's ratio of 
fibre is supposed to be υf  =  0.2, modulus of elasticity of 
rubber matrix is Em  =  Er  = 6 MPa. For the composite lay-
ers: E1 = 1338  MPa, E2  =  E3  =  19 MPa, υ12  =  υ13  =  0.3637, 
υ23  =  0.496, G12  =  G23  =  G13  =  6  MPa  [14, 15]. The afore-
mentioned material properties are defined in the material 
coordinate system, in which:

1.	 designates yarn direction,
2.	designates transverse direction inside the layer,
3.	 stands for the direction normal to the layer.

Rubber liners, made of EPDM-EVA compound, regarded 
as incompressible, have been described by a 2 parame-
ter Mooney-Rivlin model with the following parameters: 
C10  =  −0.4982 MPa, C01  =  1.523 MPa, D = 0 [14].

For the rubber material, the strain energy density func-
tion can be written as:

W I I� �� � � �� �� �C C
10 1 01 2

3 3 , 	 (1)

where W is the strain energy density function, I1  and I2  
are the first and second invariant of B,  the deviatoric 
component of the left Cauchy-Green tensor B [16].

By substituting the aforementioned constants to Eq. 1, the 
parametrized Mooney-Rivlin law for the rubber material is:

W I I� � � � � �� � � � �� �0 4982 3 1 523 3
1 2

. . .MPa MPa 	

These material properties have been validated by the 
uniaxial tensile tests performed on test specimens and 
tube samples, the experimental forces showed good agree-
ment with those of the macromodels [14].

Dimensions and yarn orientation of layer 1 can be seen in 
Fig. 3, while FE model arrangement can be viewed in Fig. 4.

Rubber is vulcanized around yarns, so connection of 
inner and outer rubber liners to reinforcement layers is 
bonded.

The macromechanical FE simulation consists of 3 time 
steps. The standard test specimen has been fixed into the 
left and right tensile jaws in the first and the second time-
steps respectively. The tensile jaws are modelled as steel 
with a modulus of elasticity of E  =  200,000 MPa and a 
Poisson's ratio of ν  =  0.3. Contacts of the tensile jaws and 
the test specimen are frictional with a coefficient of fric-
tion of 0.8  in order to avoid any slipping [17]. In the third 
timestep, a prescribed displacement of 25  mm has been 
applied on the tensile jaws of the right end, while the ten-
sile jaws on the left end hold their position.

2.3 FE micromodel
FE micromodel of the standard test specimen consists of a 
micromodel cut from the cross-section, in the vicinity of mid-
plane YZ; −5  <   x  <  5 (mm) (Fig. 5) having a length of 10 mm 
and a width of 4 mm, measured at the middle of the compos-
ite layup, containing both the reinforcement layers and the 
rubber liners (Fig. 6). In the micromodel, yarns and matrix 
are modeled as solid bodies cut from a geometric model of 
filament-wound yarn bundle having a winding angle (ori-
entation angle) of 55°. Diameter of the yarns is 0.7  mm 

Fig. 2 Cross-section of the composite tube [14] © 2017 
by authors and Scientific Research Publishing Inc.

Fig. 3 Dimensions of the test specimen, along with 
the yarn orientation of layer 1 (+55˚) and thickness 
of the test specimen t [14] © 2017 by authors and 

Scientific Research Publishing Inc.

Fig. 4 FE model arrangement of standard test 
specimen [14] © 2017 by authors and Scientific 

Research Publishing Inc.
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measured on yarns extracted from the tube (Fig. 7(b)). The 
reinforcement layers have a fiber volume fraction of 45% as 
in the case of the macromodel  [14]. All the yarns and the 
matrix in the reinforcement layers are split into two segments 
(Fig. 6(a) and (b)) for better visualization (some results are 
taken from the boundary of these two half layers).

Yarns are modeled as linear orthotropic (trans-
versely isotropic), with the following material properties: 
E1=  2961 MPa, E2  =  E3=20 MPa, ν12  =  ν13=  0.2, ν23  =  0.4, 
G12  =  G13  =  5 MPa, G23  =  5 MPa. Modulus of elasticity in 
material direction 1 E1 is 2961 MPa (see Section 2.2; for 
the detailed deduction of E1, see [14]). Moduli of elasticity 
E2 and E3 are estimated to be 20 MPa, much lower than E1 
as the yarn has little stiffness in direction 2 and 3 due to 
having a long pitch of twist relative to the thickness of a 
single fiber (Fig. 7). Shear moduli G12, G13 and G23 are esti-
mated as the shear moduli of the rubber matrix because 
interaction of single fibers is slight in the shear mechanism 

of the yarn due to the low thickness of a single fibre and 
in-plane shear mechanism is affected mostly by matrix 
properties (Fig. 7(a) and (b)) [18].

Moreover, due to possible inaccuracies regarding the 
estimation of moduli E2 and E3, the case of E2=E3=200 MPa 
has also been investigated.

In these cases, G12, G13 and G23 have been calculated by 
Eqs. (2) and (3):

G G E
12 13

2

12
2 1

� �
� �� ��

, 	 (2)

G E
23

2

23
2 1

�
� �� ��

. 	 (3)

In order to examine the effect of material constants 
E2 and E3 , a brief parameter study has been carried 
out. Material properties are the following in the case of 
E2  = 200 MPa:

E E
G G G

2 3 12 13

23 12 13 23

200 0 2

0 4 83 71

= = = =

= = = =
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, . ,

. , , .
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Results will be presented in Section 3.

Fig. 5 Position of the micromodel cut from the macromodel-
test specimen

Fig. 6 Meshed geometry of the micromodel of the composite tube test 
specimen; a) complete model; b) yarn orientation (matrix hidden)

Fig. 7 Microscopic images of reinforcement yarns; 
a) microscopic image of one yarn; b) microscopic image of 
yarns embedded in the rubber matrix with the diameter of 

one yarn indicated in red
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The matrix is modeled by a 2 parameter Mooney-Rivlin 
model with parameters also mentioned in Section 2.2 'FE 
macromodel'.

The geometric model has shared topology which means 
that the whole FE model consists of one single mesh, being 
equal to perfectly bonded contacts between yarns and the 
matrix, and between each adjacent layers as well.

The FE model is a nonlinear model with large deflection 
(utilizing Cauchy stress tensor and Hencky logarithmic 
strain tensor [19]) using a nonlinear incremental approach.

The displacement coupling technique (also known as 
submodeling) matches the coupled surfaces of the micro-
model (all the boundaries of the layers) with those of the 
macromodel using interpolation. In this study, the displace-
ment coupling technique has been solely used to obtain the 
prescribed boundary conditions of the micromodel from the 
FE macromodel of the uniaxial tension of the standard test 
specimen as the difference between the average displace-
ment of the right boundary (15.55 mm) and the average dis-
placement of the left boundary (9.65 mm) in direction X. 

Based on this, the displacements are the following: nodes 
of the right boundary translate 5.9 mm in direction X, hav-
ing free degrees of freedom in direction Y and Z, shown in 
Fig. 8, while displacement of the nodes of the left boundary 
in direction X is 0 (Fig. 9). Weak springs ensure that any 
rigid body motion is avoided in directions Y and Z.

There are approximately 43200 nodes and 175400 
SOLID185 elements (154000 4-node tetrahedral and 
20300 8-node hexahedral elements) in the FE micromodel 
of the standard test specimen. This element type is homo-
geneous with full integration. The FE model has been cre-
ated in ANSYS 2019 R1.

3 Results and discussion
Fig. 10 shows experimental force results, force results of 
the FE macromodel and force results of the FE micromodel 

at different moduli E2 (10 MPa, 20 MPa, 200  MPa) at 
G12  =  5 MPa, and E2  =  10 MPa at G12  =  3 MPa. 

In case of modulus of elasticity E2  =  200 MPa, the simula-
tion has been convergent only until 11.28 mm (E2  =  200 MPa) 
expressed as displacement of the FE macromodel. Force 
results of E2  =  20 MPa are in good agreement with experi-
mental results and they show similar tendencies, however, in 
case of E2  =  200 MPa, the micromodel behaves much stiffer 
and force results are very far from the experimental results 
and have a different tendency. 

Force results of E2  =  10 MPa and G12  =  5 MPa are closer 
to experimental results than forces of E2  =  20 MPa, forces 
measured at E2  =  10 MPa and G12  =  3 MPa are lower than 
experimental results although these are still in an accept-
able region. These results justify that despite the possi-
ble uncertainty associated with the estimation of elastic 
constants, experimental force results can be accurately 
approximated in the range of E2  =  10 … 20 MPa and Fig. 8 Prescribed nodal displacement on the right 

boundary of the model (shown in red), undeformed shape

Fig. 9 Prescribed nodal displacement on the left 
boundary of the model (shown in yellow), undeformed 

shape

Fig. 10 Force-displacement curves of the standard test specimen; 
FE macromodel, experiment, FE micromodel at different moduli E2 

(10 MPa, 20 MPa, 200 MPa), G12=5 MPa; and at E2=10 MPa, G12=3 MPa
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G12  =  3…5 MPa. By consequence, the applied parameters 
E2  =  20 MPa and G12  =  5 MPa are acceptable for the mod-
elling of tension of the composite test specimen.

Deformation, stress and strain results for the first rein-
forcement layer (and afterwards for other layers) in the 
images hereinafter presented are shown in the middle of the 
layer from top view (so the lower half of the layer is shown in 
these figures) at end time (at a displacement of 5.9 mm of the 
micromodel). All the deformation, strain and stress results 
are shown in the following images in deformation scale 1:1.

In these figures, the material coordinate system is dis-
played in the lower left corner, X, Y and Z indicating 
directions 1, 2 and 3.

Fig. 11 shows deformation in global X direction in the 
first layer. Deformation distribution is almost uniform 
regarding coordinates Z, this confirms that load distribu-
tion is even in terms of global longitudinal strains within 
the first layer.

In Figs. 12, 13, 14 and 15 strain components can be 
seen in material coordinate systems, firstly to the whole 
length  (in Fig. 12), and then between x  =  −4 mm and 
x  =  4  mm for the other components (Fig. 13, Fig. 14, 
Fig. 15). Right at the boundaries, high strain concentration 
can be seen due to the boundary effect (Fig. 12, Table 1) 
in very small areas. To overcome this issue, only the piece 
between x  =  −4 mm and x  =  4 mm has been considered. All 
strain components are higher in the matrix than in yarns. 
Strains in material direction 1 (Fig. 12) are all positive, 

matrix undergoes significant tension in this direction, 
while strains are not so significant in yarns due to high E1.

In material direction 2, yarns sustain tension to a 
minor extent, while matrix is compressed to a greater 
extent (Fig. 14).

A significant difference can be seen between shear 
strains in plane 12 in yarns and matrix in Fig. 15. There 
are increased strains near free yarn ends (see the small red 
zones on the upper and the lower edges of the test spec-
imen), this may lead to the conclusion that debonding is 
dominant in the failure mechanism of the cord-rubber 
reinforcement layers and that free yarn ends are probable 
initiation points of failure. Fig. 15 is in agreement with 

Fig. 11 Directional deformation (global X direction), layer 1

Fig. 12 Normal strain in material direction 1 in layer 1, (coordinates 
x = −4 mm and x = 4 mm shown with red lines)

Fig. 13 Normal strain in material direction 1 in layer 1 between x = −4 
mm and x = 4 mm

Fig. 14 Normal strain in material direction 2 in layer 1 between x = −4 
mm and x = 4 mm

Fig 15 Shear strain in plane 12 in layer 1 between x = −4 mm and 
x = 4 mm
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Fig. 1, illustrating mechanical behaviour during the ten-
sile test, where clearances can be seen near free yarn ends. 

There is a considerable difference in shear strains 
γ12 between yarns and the matrix, which is numerically 

0.55:0.95 (Fig. 16). High γ12 values imply that the dom-
inant mode of load transfer is shear in the matrix in the 
reinforcement layers. 

Fig. 16 shows strain components in material coordinate 
system in the path of Fig. 17. Strain ε2 is the smoothest 
component being the smallest one. Strain component ε1 is 
higher than ε2. Shear strain γ12 values are higher even than 
ε1 in the whole path.

Fig. 18 shows strain components in material coordinate 
system along yarn length (the exact path from which the 
results have been gathered can be seen in Fig. 19). These 
strain components are much lower than strains in the 
matrix. Strain component ε1 is constant, strain ε2 is small 
and strain γ12 is the most significant being much higher in 
absolute value than ε1, confirming that yarns undergo signif-
icant shear while tension in material direction 1 is limited.

Fig. 20 shows stresses in material direction 1 in layer 1. 
Tensile stresses are equally distributed among yarns and 
matrix. Higher stresses arise firstly in the matrix and then 
the zone with higher stresses spreads in diagonal bands in 
yarns, resulting in a non-uniform stress distribution inside 
yarns, this can be attributed to the short-yarn reinforced 
nature of the test specimen. 

Fig. 21 shows stresses in material direction 2 in layer 1 
between x  =  −4 mm and x  =  4 mm. Stress distribution 
in matrix and in the yarns is uniform, although stress in 
material direction 2 in yarns is not significant.

Table 1 Maximum and minimum strains in each layer between x = -4 and +4 mm for the test specimen

ε1, max (-) ε1,min (-) ε2, max (-) ε2,min (-) γ12,max (-) γ12,min (-)

layer 1 0.349 0.1241 0.1332 −0.2542 −0.4335 −1.06

layer 2 0.3407 0.137 0.1639 −0.2462 1.0385 0.4437

layer 3 0.3369 0.1318 0.1332 −0.2245 −0.4525 −1.0779

layer 4 0.3387 0.1358 0.1162 −0.2198 1.1337 0.4815

Fig. 16 Strains in material coordinate system along the path of Fig. 17 
(in global direction X), the sections x < −4 mm and x > 4 mm are shown 

as dashed

Fig. 17 Location of the path utilized for the visualization of stresses and 
strains in global direction X in the middle of layer 1; a) in plane XY; 

b) in plane YZ

Fig. 18 Strain components in material coordinate system along yarn 
length
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In Fig. 22, shear stresses in plane 12 in layer 1 are 
shown between x = −4 mm and x = 4 mm. It shows higher 
negative shear stresses in the yarns and lower negative 
shear stresses in the matrix. τ12 is significant and relatively 
evenly distributed in yarns.

Fig. 23 shows stress components in material coordinate 
system along the path situated in the middle of layer 1 (in 
terms of both vertical and horizontal dimensions), shown 
in Fig. 17, the zone affected by boundary effect is repre-
sented by dashed lines. Shear stress τ12 is the smoothest of 
all between x = −4 mm and x = 4 mm marking its principal 
significance in load transfer. Slightly higher stresses arise 
in yarns than in the matrix. On the other hand, σ1 has the 

highest differences between values of the yarns and the 
matrix, having a slightly higher maximum than σ2.

For examination of stresses along yarns, stress results 
have been plotted in Fig. 24 along a path in the middle 
of the yarn, shown in Fig. 19. The entire path is situated 
outside the regions affected by the boundary effect. Inside 
one yarn, tensile stresses in material direction 1 oscillate 

Fig. 19 Path in the middle of a yarn

Fig. 20 Normal stress in material direction 1 in layer 1 between 
x = −4 mm and x = 4 mm (with non-uniformly divided legend for better 

visualization)

Fig. 21 Normal stress in material direction 2 in layer 1 between 
x=-4 mm and x=4 mm (with non-uniformly divided legend for better 

visualization)

Fig. 22 Shear stress in plane 12 in layer 1 between x = −4 mm and 
x = 4 mm

Fig. 23 Stress components in material coordinate system along the path 
of Fig. 17 (in global direction X), the sections x < −4 mm and x > 4 mm 

are shown as dashed

Fig. 24 Stress components in the path of Fig. 19 in material coordinate 
system along yarn length
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between 3 MPa and 3.65 MPa, having larger range than 
σ2 and τ12, further confirming that stress distribution in 
material direction 1 is not uniform in yarns. High shear 
stresses τ12 arise even in the yarns being as significant as 
normal stresses σ1. As it can be seen in Fig. 24, only tensile 
stresses occur in yarns in material direction 1 and 2, so it 
is enough to focus only on tensile moduli in the material 
model of the yarns. This statement is also confirmed by 
Fig. 13 and Fig. 14. 

Among the stresses in all the layers in the zone not 
affected by boundary effect between x   =   −4   mm and 
x = 4 mm (Table 2), tensile stresses in material direction 1 
are the most significant, while stresses in material direc-
tion 2 and shear stresses τ12 are also substantial confirming 
that tension-shear coupling is prominent in the mechanical 
behaviour of the composite test specimen. 

Fig. 25 displays yarn orientation angles (of yarns 1, 
2, 3, 4, 5, 6, 7, 8 and 9 designated in Fig. 26) during FE 
simulation as a variance of displacement. As displace-
ment increases and the test specimen elongates, yarn 
orientation angles decrease as an approximately linear 

function of displacement because of the contraction of the 
cross-section.

In reinforcement layers in the matrix, shear dominates 
the mechanical behavior in the midplane of reinforcement 
layers both in terms of strains and stresses (Figs. 27, 28 
and 29), representing similar behaviour as in layer 1 (Figs. 
15 and 22).

In Fig. 30, positive shear strain values arise in the zones 
where there are no overlapping yarns in adjacent layers. 
In these zones, in-plane shear transmits load between the 
adjacent reinforcement layers. The lowest shear strains 
occur in zones where there are overlapping yarns in adja-
cent layers. Fig. 31 shows shear stresses between layer 1 
and layer 2, having the same tendency as Fig. 30.

4 Conclusion
FE micromechanical analysis of cord-rubber composite 
tube test specimen presented in this article is based on an 
incremental large deflection technique and is established 
with the utilization of submodeling. The material model 
is elastic, moduli of elasticity E2 and E3 and shear moduli 

Table 2 Maximum and minimum stresses in each layer between x = −4 mm and x = 4 mm for the test specimen

σ1, max (MPa) σ1, min (MPa) σ2, max (MPa) σ2, min (MPa) τ12max (MPa) τ12min (MPa)

layer 1 11.75 −3.82 6.08 −3.94 −0.37 −4.6

layer 2 16.73 −4.73 6.9 −5.68 4.63 −0.32

layer 3 12.57 −3.42 6.76 −2.88 0.01 −4.69

layer 4 11.59 −3.65 6.47 −4.05 4.13 0.53

Fig. 25 Yarn orientation angles during FE simulation

Fig. 26 Yarn orientation angles at the end of the simulation, the 
undeformed shape and initial yarn orientation is shown in black
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G12, G23 and G13 are estimated and the element sizes may 
induce some inaccuracy. At the same time, the stress-
strain results represent only tension. The main conclusions 
are as follows:

1.	 Force-displacement curves of the micromodel and 
experimental results show a considerably good 
agreement. In both cases, E2  =  E3  =  20 MPa approx-
imate experimental results accurately, however, sig-
nificantly higher moduli (E2  =  E3  =  200 MPa), over-
estimate tensile reaction forces significantly.

2.	 Stress distribution in material direction 1 is non-uni-
form in yarns, forming bands with higher stresses 
going through the yarns, while stress-distribution 
in the matrix is nearly uniform. Load transfer to the 
yarns is quite poor, because of the short-yarn rein-
forced nature of the specimen (due to the low width 
of the specimen) and because orientation angle of the 
composite tube is 55°, which is optimal for biaxial ten-
sion (uniaxial tension and pressure), so the tensile load 
is not entirely carried by yarns, instead, the matrix has 
a larger role in bearing the load, which is not charac-
teristic to composite structures in general. The shear 
plays an important role in load transfer and also in 
failure mechanism of the specimen. Shear strains are 
high at free yarn ends marking the possible locations 
of failure initiation in debonding in the shear mecha-
nism of the reinforcement layers (see γ12max , γ12min in 
Table 1). Shear strain γ12 values are higher even than ε1 
in the whole longitudinal path of Fig. 17.

3.	 There is a considerable difference in strains between 
yarns and the matrix. This is the most perceptible in 
the case of strain γ12, which is numerically 0.55:0.95. 
High γ12 values imply that the dominant mode of load 
transfer is shear in the reinforcement layers.

Regarding stresses, there is a large difference between 
values in the matrix and the yarns.
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Fig. 27 Shear strain in plane 12 in layer 2

Fig. 28 Shear strain in plane 12 in layer 3

Fig. 29 Shear strain in plane 12 in layer 4

Fig. 30 Shear strain between layer 1 and layer 2, at the top of layer 2

Fig. 31 Shear stress between layer 1 and layer 2, at the top of layer 2
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