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Abstract

In industrial practice, production planning is a key factor for manufacturers and suppliers. The entire planning process spans from 

the appearance of the customer demand to the fulfillment of the demand. Operational execution is based on pre-planned production 

processes and operations using properly allocated resources. The accurate planning of assembly operations within production is an 

extremely complex process in terms of efficiency. Predicting stochastically variable efficiencies is difficult due to the ever-changing 

manufacturing conditions. This paper defines typical assembly process situations for a semi-automatic assembly line and examines their 

consequence for the Overall Equipment Effectiveness (OEE). Firstly, a literature review demonstrates the scientific relevance. Secondly, 

the classification of patterns based on assembly process description parameters is described taking into account the positive and negative 

effects on the OEE. In addition, the assembly patterns and their characteristics are illustrated through a real automotive example.
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1 Introduction
In industrial practice, the efficiency of assembly pro-
cesses is fundamentally determined by the feasibility of 
the production plan and the availability of the allocated 
resources. Continuous increase in efficiency, among oth-
ers, is supported by the environment of Industry 4.0 [1, 2], 
Smart Manufacturing [3, 4], Big Data [5, 6], and Artificial 
Intelligence (AI). Using different data mining techniques 
reveals the hidden production patterns in manufactur-
ing-related data [7]. 

Nowadays, much more data is generated in the field of 
production and assembly than can be processed since the 
production lines are equipped with sensors and modern 
camera systems [8]. In addition, the products have bar-
codes and unique identifiers, which further increases the 
amount of data. Data collection, recording, and storage can 
be automated and integrated with various systems, e.g., 
Manufacturing Execution System (MES) [9, 10]. MES can 
provide information and a database for work planning and 
production control [11, 12]. From digital shop floor data [13], 
the value of Overall Equipment Efficiency (OEE) is available 
in real-time and in case of performance deterioration imme-
diate operational countermeasures can be taken [14, 15].

The aim of this paper is to reveal and identify different 
pattern categories at the semi-automatic assembly lines as 
a function of OEE.

The paper is organized as follows. Section 2 focuses on 
the relevant scientific work regarding OEE and manufac-
turing patterns. Following, Section 3 describes the assem-
bly pattern categories with positive and negative effects on 
OEE. Section 4 displays the revealed assembly patterns in 
industrial practice. Section 5 concludes the paper.

2 Literature review
In the scientific literature, the concept of Overall 
Equipment Effectiveness and data mining are extensive. 
In terms of OEE, more than 850 papers were published 
between 1996 and 2020 [16].

Some of them present in detail the concept of OEE [17], 
its different calculation methods [18], and the derived addi-
tional efficiency measures, such as Overall Equipment 
Effectiveness of a Manufacturing Line (OEEML) [19], 
Overall Throughput Effectiveness (OTE) [20], and 
GPE  (Global Process Effectiveness) [21]. Numerous case 
studies describe efficiency improvements in different ways 
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in various areas. Involving diverse Lean manufactur-
ing methods, OEE was also analyzed through its compo-
nents (availability, performance, and quality). Typical val-
ues of OEE as a standard and best practice Key Performance 
Indicator (KPI) for batch type production, discrete process, 
and continuous process were defined by Hansen [22].

Regarding data mining, monitoring of production data 
began in the late 1980s, but current data mining meth-
ods were developed in the 2000s. According to Frawley 
and Piateski, data mining is "the non-trivial extraction 
of implicit, previously unknown, and potentially useful 
information from data" [23].

In the manufacturing and assembly domain, data min-
ing is applied for predictive maintenance, failure detec-
tion, quality control, production planning and scheduling, 
and decision support systems [24]. Several data mining 
methods are used, including classification, regression, 
clustering, dimensionality reduction, dependency model-
ing, association discovery, change and deviation detection, 
and pattern discovery [25, 26]. According to Laxman and 
Sastry, the pattern is a local structure that makes a specific 
statement about a few variables or data points [27]. There 
are several applications of machine learning in pattern 
recognition [28]; these can be supervised learning (e.g., 
classification), unsupervised learning (e.g., k-means clus-
tering), and reinforcement learning [29].

Tao et al. analyzed production abnormalities and found 
that before the occurrence of specific disturbances, certain 
patterns can be captured in the time series of data (e.g., 
energy consumption, torque, etc.) in time series [30].

Muchiri and Pintelon describe the chronic and sporadic 
losses as a pattern in manufacturing. Chronic disturbances 
are small and hidden, while sporadic losses occur quickly 
and have large deviations from the normal state [31].

Gröger et al. stored the manufacturing optimization 
patterns in a Manufacturing Pattern Catalogue. These 
patterns were presented as typical optimization processes 
such as best practices [7].

Niedermann et al., in the field of deep business opti-
mization, defined several patterns, including paralleliza-
tion, elimination, decomposition, resource allocation, and 
automated approval pattern. More than twenty optimi-
zation patterns were collected in a pattern catalog [32]. 
Niedermann and Schwarz applied different data mining 
techniques such as clustering for triage patterns, a deci-
sion tree for automated decisions, and multiple regression 
for resource selection [33].

After reviewing the relevant literature, it can be stated 
that the manufacturing patterns and manufacturing pat-
tern catalogs are mentioned in several places; however, 
assembly patterns and OEE patterns detailed in industrial 
practice were not found.

3 Classification of assembly patterns
In the field of assembly, characteristic patterns are sets of 
data that are closely related, occur regularly, are predict-
able, and identify assembly efficiency.

This article focuses on semi-automatic assembly lines 
or hybrid assembly lines where automatic devices are 
combined with manual work in one system.

At semi-automatic assembly lines, assembly patterns 
are based on the cycle time measured at each workstation. 
The cycle time data of each workstation and each product 
type is provided by the Manufacturing Execution System 
(MES). To reveal patterns that affect the OEE, the start and 
end times of assembly operations at each workstation must 
be known, resulting in cycle time or other momentary dis-
turbances that affect the assembly process. Special atten-
tion should be paid to the bottleneck station that determines 
the output as well as the OEE value of the assembly line.

This article discusses the patterns that are present on 
assembly lines on a daily and weekly basis. Patterns that 
occur infrequently are not currently examined (e.g., cer-
tain cases of quality error).

Assembly patterns can be classified into the following 
categories depending on their time of appearance:

•	 time-dependent (e.g., shift start, type change);
•	 time-independent (e.g., machine failure).

Another grouping can be formulated according to the 
effect on the elements of OEE:

•	 effect on availability (e.g., machine failure);
•	 effect on performance (e.g., longer test time);
•	 effect on quality (e.g., dimensions and tolerances).

Moreover, disturbances in patterns can be planned 
(e.g., regular quality checks) and unplanned (e.g., mate-
rial shortage).

The deviations can be related, among others, to:
•	 machine, workstation, tool, etc.;
•	 human (operator, setter, etc.);
•	 process;
•	 material;
•	 production plan;
•	 a combination of these, etc.
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In the following, based on the recorded start and 
end points of the cycle time, the assembly patterns are 
explained by describing each category.

3.1 Assembly patterns with positive effects on OEE
Patterns that can be revealed at semi-automatic assem-
bly lines with a positive effect on OEE, i.e., increased effi-
ciency, are shown in Table 1.

The assembly process is continuous if the cycle time 
of each workstation is realized within the planned time 
frame. It is interrupted if another none productive time 
occurs between operating times. It is plannable if the 
exact time and duration of the pattern can be determined 
in advance and resources can be assigned to it. Unplanned 
patterns, which usually require immediate intervention, 
decrease the OEE value the most.

Patterns that increase the OEE can be characterized as 
follows:

1.	 Normal assembly:
•	 the right type and quality of products are assem-

bled with the expected cycle time;
•	 there is no disturbance in the system;
•	 most characteristics of assembly processes;
•	 basis of production planning and scheduling.

2.	Capacity extended assembly:
•	 allocated added resources (e.g., added staff, added 

equipment, tool, etc.) with systematic production 
planning;

•	 typical short term in a crisis situation (e.g., urgent 
delivery);

•	 disadvantages also occur (e.g., faster tool wear, 
higher maintenance cost, extra costs).

3.	 Human experience:
•	 higher performance, faster setup, products are 

assembled within the expected cycle time;
•	 constantly broadening , valuable knowledges.

4.	 Specific event performance:
•	 carefully planned assembly period (e.g., audit ses-

sion, speed day);
•	 not a long period;
•	 it does not occur frequently.

For each pattern, the assembly process is continuous. In 
addition, it is predictable and plannable. The goal of oper-
ation management is to keep most of the production going 
according to the normal assembly process.

3.2 Assembly patterns with negative effects on OEE
Patterns that can be revealed at semi-automatic assembly 
lines that negatively affect OEE, i.e., reduce efficiency, are 
shown in Table 2.

Patterns that decrease the OEE can be characterized as 
follows:

1.	 Type change:
•	 occurs when changing the product type;
•	 some products or parts are scrap or should be 

repaired;
•	 fast start after the type change;
•	 regular activity, can be classified based on dura-

tion and difficulty.
2.	Workstation failure with downtime:

•	 downtime occurs;
•	 unexpected, not planned;
•	 immediate intervention is required;
•	 it also includes material shortages.

3.	 Process parameter change:
•	 change of one or more process parameters (e.g., 

workstation cycle time increases);
•	 more critical if it occurs at the bottleneck station;
•	 in some cases, it is not visible (human perception 

is not possible);
•	 raw material effect (e.g., plastic parts with differ-

ent cavities).
4.	 Assembly scrap:

•	 individual or serial occurrence;
•	 controllable by machine (e.g., if it occurs five 

times, then stop the machine);

Table 1 Assembly patterns with positive effects on OEE

Type of pattern category Effect on 
OEE

Assembly 
process Plannable

Normal assembly + continuous yes

Capacity extended assembly + continuous yes

Human experience + continuous yes

Specific event performance + continuous yes

Table 2 Assembly patterns with negative effects on OEE

Type of pattern category Effect on 
OEE

Assembly 
process Plannable

type change – interrupted yes

workstation failure – interrupted no

process parameter change – continuous no

assembly scrap – continuous yes

trial run, test series – interrupted yes

human effect and behavior – interrupted no

shift change – interrupted yes

shut down – interrupted yes

poka-yoke check – interrupted yes
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•	 tolerance effect (parts are on the tolerance limit);
•	 at semi-automatic line depends on the human 

experience.
5.	 Trial run, test series, and upgrade:

•	 experiment or introduction of a new part, compo-
nent, subassembly, or assembled product;

•	 workstation, equipment upgrade;
•	 software update;
•	 MES, network correction.

6.	 Human effect and behavior:
•	 compliance with factory regulations (e.g., lon-

ger brake time, assembly operations started later, 
ended earlier);

•	 support and assistance to the other workstation (to 
a slower operation in general);

•	 training period;
•	 job rotation (planned operator change between 

workstations);
•	 human factor (e.g., fatigue);
•	 build of excess buffer between workstations.

7.	 Shift change:
•	 start and stop assembly operations;
•	 dedicated time (e.g., every workday 14.00);
•	 active information flow;
•	 more setup and checking operations within a 

short time (mandatory operations based on auto-
motive standards).

8.	 Shut down:
•	 workstations are shut down for a longer time (e.g., 

weekends, holidays, etc.);
•	 affects all workstations.

9.	 Poka-yoke check or verification:
•	 short-term, planned downtime (at a specified 

time, e.g., after shift change, after type change);
•	 control according to standards;
•	 predetermined duration, supported by based 

on Single Minute of Exchange of Die (SMED) 
principle.

Negative patterns can interrupt the continuity of the 
assembly process but, in some cases, can be planned in 
advance.

4 Identification of assembly pattern categories in 
industrial practice
At an automotive company, data patterns were analyzed on 
a seat structure semi-automatic assembly line. Using pro-
duction data sources, pattern categories were discovered 
and then defined. The determined categories were taken into 
account during the production planning, thus making the 
line output more accurate. Fig. 1 shows the applied process.

Over a longer period of time (e.g., half a year, in a three-
shift production), assembly patterns can be explored using 
a variety of data mining programs. However, it is neces-
sary to know the functional operation process and logis-
tical circumstances of a given assembly line to reveal real 
and correct patterns. Fig. 2 shows a real industrial exam-
ple of the area of a semi-automatic line for planned pattern 
categories for an afternoon shift.

Based on these data, the time and duration of the shift 
change, poka-yoke check, event performance, type change, 
and shut down can be planned and taken into account to 
predict the OEE value.

The effect on OEE under real assembly conditions is 
shown in Fig. 3. In this case, the OEE value is reduced by 
different percentages due to workstation failure, process 
parameter change, type change, poka-yoke check, shift 
change, and assembly scrap.

However, the capacity extended assembly increased the 
OEE value. Generally, a one-minute assembly loss results 
in a 0.208% OEE reduction regarding an eight-hour shift. 

The revealed patterns and their effects support produc-
tion planning and resource management, which results in 
production cost reduction. Based on real industrial exam-
ple, one percent efficiency improvement in a semi-auto-
matic assembly line saves 15,000 € with 15 shifts of oper-
ation per week.

Fig. 1 From data to applied pattern categories
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Assembly patterns may be interrelated; for example, due 
to a shortage of raw materials, product changes may occur 
to ensure continuous assembly and better use of resources, 
which requires poka-yoke control. In this case, at least 
three pattern categories are connected, which can even be 
a best practice. Another example, type change is followed 
by a process parameter pattern, which again results in a 
type change. A portion of the combination of possible cor-
relations is shown in Table 3. It is important to assign the 
rows to the columns in Table 3 so that the direction of con-
sequence can be interpreted.

Factory practice and the applied quality assurance 
system used must be taken into account when interpret-
ing the possible combinations. For example: during the 
assembly operation, the type change should always be 

followed by a poka-yoke check, then normal assembly can 
be/is expected.

5 Conclusion
In this article, typical assembly process situations for the 
semi-automatic assembly line as a function of OEE have 
been presented. Based on the cycle time of each worksta-
tion, assembly pattern categories were identified, such as 
the time of occurrence, effect on the elements of OEE, and 
the aspects of production planning. Assembly pattern cat-
egories were revealed at hybrid automatic assembly lines 
that positively and negatively affect the OEE. During a 
case study at an automotive company, patterns were ana-
lyzed on a seat structure semi-automatic assembly line. 
The effect on OEE under real assembly conditions was 
detailed. The revealed pattern categories and their effects 
support production planning and resource management, 
which reduces production costs. Possible interconnec-
tions of pattern categories were also presented. A future 
research goal could be to predict the OEE based on the 
assembly pattern categories, which can also help predict 
assembly costs and manpower parameter values.

Fig. 2 Example of plannable pattern categories at an assembly line

Fig. 3 Real example: pattern category effects on OEE

Table 3 Possible interconnections of pattern categories (a portion of the 
full table)

Pattern 
categories

Normal 
assembly

Type 
change

Work 
station 
failure

Shift 
change

Poka-
yoke 
check

Normal
assembly – yes yes yes yes

Type change no – yes yes yes

Workstation 
failure yes yes – yes yes

Shift change no yes yes – yes

Poka-yoke
check yes yes yes yes –
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