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Abstract 
The uninterrupted operation of electric cars requires an ade-

quate number of chargers installed in charging stations. The 
incoming requests determine the required number of chargers 
in the station, so it is of utmost importance to have practicable 
car motion models for planning purposes.

In this paper a stochastic model is proposed to simulate the 
behavior of a taxi fleet consisting 100 identical cars. Car usage 
characteristics were extracted from real life measurement data 
and then synthetic driving cycles were generated by Monte 
Carlo simulation. The state of charge of every car can be moni-
tored and the number of cars that have to wait for being charged 
can be determined using the proposed algorithm. Parameters 
can be varied freely, so the model is adequate for modeling dif-
ferent datasets.

Keywords
electric car · charging station · Monte Carlo simulation · 

stochastic model

1 Introduction 
Electric vehicles (EVs) require recharging, just as cars 

with internal combustion engines need to be refuelled. How-
ever, EVs take longer time to be recharged, so the planning 
of a charging station requires precise models in order to avoid 
unwanted and annoying queues and waiting at the very station 
itself. A deterministic model for such planning purpose does 
not come into question, as the number of cars is large and they 
all have different characteristics: driving distances, driving 
style, consumption, etc. all vary from car to car. Therefore, a 
stochastic model is required, capable of capturing the relevant 
features of electric car usage and with which the required num-
ber of chargers can be determined.

In this paper we present a stochastic model applied to a taxi 
fleet, based on real traffic data. Car usage characteristics were 
extracted from measured GPS trajectories [1,2] and Monte 
Carlo simulation was used to generate synthetic driving cycles. 
The stochastic model was implemented in MATLAB. 

2 The stochastic model
The core of the proposed stochastic model is a Markov-chain-

like algorithm that utilizes transition matrices [3]: the probability 
of transition from a given state to another one is given in every 
simulation time step (computed using the statistics of the meas-
urement data) and the algorithm computes the state of every car 
for the next time step according to the actual transition matrix.

Tab. 1. Transition matrix

state/state move
park without 

charging
park and charge

move a11 a12 a13

park without 
charging

a21 a22 a23

park and charge a31 a32 a33

There are three different states of a car: it can either move, park 
without charging or park and charge. The transition matrix for 
a given time interval and for a given car can be seen in Table 1.
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For example, a11 is the probability that a moving car will be 
moving in the next time interval as well. The transition matrix 
is stochastic, that is, the sum of each row is 1. There are some 
simplifications regarding the matrix, though: it is assumed that 
a transition from moving or parking state to charging state never 
occurs by accident (after all, charging requires a specific location, 
namely, the charging station), so a13 and a23 both equal to 0. Simi-
larly, a charging car never stops charging and starts moving by 
accident, so a31 and a32 also equal to 0. This means, that a33=1. The 
rest of the matrix elements were calculated from the measurement 
data referenced in [1] and [2]. This matrix can be called the „ini-
tial transition matrix” (note that this matrix is time dependent: the 
values are determined for every time step; see Fig. 7).

These values are calculated for every time interval and for 
every car: this means, that the transition matrix is in fact a 4-D 
matrix. The first two dimensions contain the transition prob-
abilities that can be seen in Table 1, the third dimension is time 
and the fourth is the no. of the car (i.e. for every single car, 
for every time interval there exists a unique transition matrix). 
The algorithm then overwrites corresponding matrix elements 
if it is necessary: for example, if a car starts moving, then a 
travelling time is associated to it (raffled by Monte Carlo simu-
lation) and it will not stop until this travel time is reached up. 
This means that the elements of the transition matrix have to be 
overwritten: a11 should be 1 and the rest of the elements in the 
first row should be 0 as long as the car is moving. If the travel 
time is up, the car stops and its transition matrix for the next 
time step is restored to the originally determined one. Section 
3 gives more details about possible car state transition changes.

2.1 Car usage characteristics
The proposed model requires several types of input data: the 

most important one is the distribution of travel distance and 
travel time. Our model utilizes travel time instead of distance, 
so we are going to deal with time in first place. These data were 
obtained from [1] and [2] by statistical analysis (again, MAT-
LAB was used to extract the necessary statistical parameters). 
The database contains collected data from 10357 taxis from 
New York, with more than 15 million GPS coordinates. Taxis 
were monitored for 7 days.

The ratio of moving cars during a day can be seen on Fig. 1.
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Fig. 1. Ratio of moving cars during a day

It can be seen that the ratio of moving cars is relatively 
small in the small hours, but it continues to increase and sets 
to a relatively constant value during the day to decrease again 
in the night. It was not taken into consideration, that the cars 
are operated for two shifts a day: with that consideration, the 
ratios are roughly the double of the ones that can be seen on 
Fig. 1. Similar results were obtained in the case of a Hungarian 
dataset composed of 50 taxis [4] (unfortunately, the number of 
cars and the monitored days were too few in the case of this 
database, so it could not be taken as a representative sample; 
nonetheless, the behaviour of taxis follows a similar pattern as 
for the New York taxis):
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Fig. 2. Ratio of moving cars, Hungarian dataset

In this case, measurement data from only 6:00 to 18:00 was 
available.

2.2 Fitting of distribution functions
For Monte Carlo simulation purposes, the distribution func-

tions of travel times and travel distances are required (our 
algorithm does calculations based on time, so we do not deal 
with travel distances much). According to references [5-18], 
the distribution of travelled distance is exponential or follows 
Lévy-distribution. About travel time distribution, the literature 
says almost nothing, so we tried to fit various types of distri-
butions by using MATLAB, Wolfram Mathematica and Easy 
Fit StatAssist [19] (this latter allows calculations for datasets 
with less than 250000 points, so for the large dataset, it was 
not used). The following figures show the results of the fitting:

Fig. 3. Exponential fitting to the travel distance



177Stochastic Modeling of Electric Car Charging Station for a Taxi Fleet 2014 58 4

The fitting results are the following: 
Distribution:  Exponential

Log likelihood:  -3.05385e+006

Domain:   0 <= y < Inf

Mean:   2.64493

Variance:   6.99563

Parameter Estimate Std.Err.

mu  2.64493 0.00212576

Estimated covariance of parameter estimates:

 mu

mu 4.51885e-006

Next, we investigated the Lévy-distribution:

 

 

 

 

 

 
 
 
 
 
 
 
 

 
Fig. 4. Lévy-fitting to the travel distance

For travel times, we checked - among others - inverse 
Gaussian and lognormal distributions (the former was seen to 
best describe the given dataset).

Fig. 5. Exponential fitting to the travel distence

The cumulative probabilities of these two types of distribu-
tions can be seen on Fig. 5 and Fig. 6, respectively. They fit 
well to the original dataset.

The parameter fitting resulted in the following values:
Distribution:  Inverse Gaussian

Log likelihood: -3.14912e+006

Domain:   0 < y < Inf

Mean:   6.7781

Variance:  90.6083

Parameter Estimate Std. Err.

mu  6.7781  0.00768293

lambda  3.43681 0.00392237

Estimated covariance of parameter 

estimates:

  mu   lambda

mu 5.90274e-005  -3.87709e-010

lambda -3.87709e-010 1.5385e-005

so λ=3,436, μ=6,778, where λ is the mean and μ is the shape 
parameter. The probability density function of the inverse 
Gaussian distribution is as follows:

f x x

x x
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Next we investigated the lognormal distribution:

Fig. 6. CDF of lognormal fitting to travel time

The parameter fitting resulted in the following values:
Distribution:  Lognormal

Log likelihood: -4.43414e+006

Domain:   0 < y < Inf

Mean:   7.16433

Variance:  94.9972

Parameter Estimate Std. Err.

mu  1.44532 0.000825951

sigma  1.02352 0.000584036

Estimated covariance of parameter 

estimates:

  mu   sigma

mu 6.82194e-007  -6.84504e-019

sigma -6.84504e-019  3.41097e-007

so σ=1.02, μ=1.44 , where σ is the shape and μ is the log-scale 
parameter. The probability density function of the lognormal 
distribution is as follows:

f x x x; , exp lnµ λ π σ µ σ( ) = ⋅ ⋅( ) ⋅ − −( ) ( )( )1 2 22 2
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2.3 Transition probabilities
In the beginning of Section 2, we have already introduced 

transition matrices, as the core elements of our algorithm. The 
figures on Fig. 7 present the transition probabilities in a graphi-
cal way (some numerical errors can be seen in the small hours 
(see the pike), but it can be neglected).
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Fig. 7. Graphical representation of the transition probabilities

The transition probabilities (i.e. the matrix elements) were 
extracted from the raw GPS data in the following way: every 
car got an index of 1 if it was moving in the investigated time 
interval (based on similar investigations found in the literature 
[5-18]) a car was considered to be moving if its speed was 
between 1m/s and 34m/s: values out of this range were rejected) 
and an index of 0, if it was parking. By counting the 0 → 0,
0 → 1 1 → 0 and 1 → 1 transitions, we could determine the 
matrix elements for the given time interval.

2.4 Energy consumption
The energy consumption of EVs depends on various factors, 

such as driving style, use of air-conditioners/heating, etc. To 
grasp the diversity of car consumption, a statistical approach is 
required once again: [20] presents consumption data for various 
electric vehicles and by fitting a distribution function to the data-
set, we can conduct Monte Carlo simulations to obtain energy 
consumption values for every car and for every time interval. 
EasyFit StatAssist [19] was used for fitting purposes and as it 
can also rank the fitted distributions in goodness according to 
the Kolmogorov-Smirnov, Anderson-Darling and Chi-Squared 
tests, so we could choose from the distributions easier.
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Fig. 8. Graphical representation of the transition probabilities Generalized 
extreme value distribution fitting to consumption

We chose generalized extreme value distribution with 
parameters ξ = −0,06923, σ = 3,0,68, μ = 15,603 where μ is the 
location, σ is the scale and ξ is the shape parameter. The fitted 
curve can be seen on Fig. 8.

The consumption of cars is given in kWh/100km in [20], 
but our algorithm calculates consumption as the ratio of battery 
capacity, thus some recalculation is needed: if the capacity of 
the fully charged battery is Cap in kWh, the consumption is y 
in kWh and the time step is tstep in hours, then the consumed 
electricity, as the ration of battery capacity is as follows:

1− − ⋅( )Cap y tstep Cap

that is, after simplification

y tstep Cap⋅

We supposed that the batteries in our simulation had 22kWh 
capacity (this is common for many car types, e.g. Nissan Leaf). 
By utilizing Monte Carlo simulation, a new consumption value 
was raffled for every car in every time step.

3 How the algorithm works
The algorithm determines the state of a given car in the (i+1)th 

time interval from the state in the ith using the transition matrix: 
a random number, weighted by the transition probabilities is 
chosen from numbers 1-2-3 and this number represents the 
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new state (1 is „move”, 2 is „park without charging” and 3 
is „park and charge”). In queuing theory, multiplication with 
the transition matrix is used and in fact our algorithm works 
in a similar way. We have seen the structure of the transition 
matrix in the beginning of Section 2, now we have to describe 
the „constrains” that overwrite the original transition matrices 
when it is necessary:

• If a car has started moving, it will not stop until it has 
moved as much as the by Monte Carlo simulation raffled 
time. This means, that the fact, that the car is moving, over-
writes the transition matrix of that given car: a11 becomes 
1 and the rest of the elements in the first row will be 0 (for 
easier programming, the entire first column becomes 1, but 
it does not matter for the rest of the calculations).

• If the car has moved enough (i.e. the previously by Monte 
Carlo simulation raffled time is up), it stops. This means, 
that a12 has to turn to 1 and the rest of the first row ele-
ments turn to 0 (again, whole columns are changed, but 
it does not affect the calculations). After stopping, the car 
returns to the default state, so its transition matrix in the 
next time step is again the original, corresponding one, 
that we have seen in Section 2.3.

• If the state of charge (SOC) of the given car’s battery 
decreases below a given limit (30% in our example), the 
car has to be recharged. This means that the transition 
matrix for that time interval has to be overwritten again: 
elements in the third column turn to 1, the rest to 0. How-
ever, the car has to get to the charging station, so its SOC 
decreases further (see Fig. 12).

• If the car is charging, it will not stop this process  until 
it is fully charged. This means, that during charging, the 
elements in the third column remain 1, the rest is 0.

• If a car has to be recharged, the algorithm checks, 
whether there are any fast or slow chargers (with this 
priority order) available. If there is no available charger, 
the car has to wait, so the second column of the tran-
sition matrix is set to 1. This waiting period lasts for 
only one time step: in the next interval, the algorithm 
checks again, if there are any free chargers. If yes, the 
car connects there and begins charging (also, the transi-
tion matrix is overwritten again). Waiting is continued in 
the case no chargers are available.

• If the car has finished charging, it has to leave the station, 
so we set the car moving by overwriting the first column 
of the transition matrix with 1. After that, the car stops 
and returns to a default state, so the transition matrix is 
restored to the original, corresponding state.

• Although it was not used in our simulation, but a usage 
limit of the cars can also be set: we can determine from 
the statistics how many times a car is likely to be used 
during a day. If it has been used for that many times, fur-
ther use is not allowed, only on the next day.

4 Simulation results
One of the numerous simulation results we obtained is 

presented in this section. The input data of the simulation were 
as follows:

• the number of cars is 100;
• the simulation time range is 3 days;
• simulation time step is 5 minutes ;
• battery capacity of all the vehicles is 22kWh;
• fast chargers recharge a fully depleted battery in 0,5 

hours, slow chargers in 4 hours;
• the number of fast chargers is 20 and the number of slow 

chargers is 10.
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Fig. 9. Number of cars in different states

Figure 9 shows the number of cars in the different states 
(moving, parking without charging, parking and charging). It 
can be seen that the behavior of the cars shows daily periodic-
ity and it is also obvious, that the given number of chargers is 
inadequate: the red curve reaches its maximum at some time 
instants.

Figure 10 shows the number of cars that have to wait, because 
there are not enough chargers in the station.
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Fig. 10. Number of cars that have to wait

Waiting times also show daily periodicity. The aim of the 
simulations is to determine the required number of chargers so 
that nobody has to wait.

Figure 11 shows how the state of charge of cars (in this 
example we show only 3 cars) varies during the simulation. 
We can see that after they are fully charged, the cars leave the 
station, so the SOC decreases in the next time step (Fig. 12):
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Fig. 11. The change of the state of charge of cars during the simulation

Fig. 12. Cars have to leave the charging station, so their SOC decreases

Fig. 13. After reaching the set SOC value, cars have to go back to the 
station to charge

Figure 13 shows that if a car’s SOC falls below the given 
critical value, it has to go back to the charging station. Mean-
while, its SOC decreases further.

Both the leaving and the approaching of the charging station 
is supposed to take only one time step: the future work aims to 
make this assumption more realistic (i.e. it can take not only 
one time step to get to the station).

5 Further work
The proposed algorithm can be upgraded and we plan to do 

so in the future:
• Leaving and approaching the station should take more 

than one time step.
• The optimal number of fast and slow chargers has to be 

determined: given a fix cost of charger installation and an 
amount of money, we can set up iterative simulations to 
determine the optimal number of fast and slow chargers.

• Optimization for more than one charging station: cars can 
go to multiple locations for charging purpose.

• Further statistical analysis to determine the distribution 
of inter-arrival time and service time: in the view of these 
data we can set up queuing models (e.g. M/M/c/N or 
M/G/1 or G/G/1, depending on the statistical results).

6 Conclusions
Based on traffic and consumption data, we created an algo-

rithm that utilizes transition matrices to determine a car’s state 
transition from one time interval to the next. The model is capa-
ble of simulating the motion of a taxi fleet composed of electric 
cars. We can also investigate whether the number of installed 
chargers in the charging station for these cars is enough to meet 
the charging needs. The model can be developed further to be 
able to determine the optimal ratio of fast and slow chargers in 
the station taking financial aspects also into consideration.

Acknowledgement
The work reported in the paper is connected to the scientific program of the “Power Converter Optimization Technology in 

e-Vehicles (e-AutoTech)” project that is supported by the New Széchenyi Plan of the Hungarian Government and financed by the 
Research and Technology Innovation Fund. (Project ID: KMR_12-1-2012-0188).

The authors would also like to acknowledge the contribution received from Mr. Imre Orlay, technology expert of DSO ÉMÁSZ.

References

1 Jing Y., Yu Z., Xing X., Guangzhong S., Driving with knowledge 
from the physical world. In. 17th ACM SIGKDD International 
Conference on Knowledge Discovery and Data Mining, KDD’11, 
New York, NY, USA. (2011). URL: http://research.microsoft.com/
pubs/148894/Driving%20with%20Knowledge%20from%20the%20
Physical%20World-kdd11.pdf

2 Jing Y., Yu Z., Chengyang Z., Wenlei X., Xing X., Guangzhong 

S., Yan H., T-drive: driving directions based on taxi trajectories. In: 
Proceedings of the 18th SIGSPATIAL International Conference on 
Advances in Geographic Information Systems, GIS ‚10, pp. 99-108. 
New York, NY, USA, (2010). URL: http://research.microsoft.com/
pubs/138035/T-Drive-%20Driving%20Directions%20Based%20
on%20Taxi%20Traces.pdf?origin=publication_detail



181Stochastic Modeling of Electric Car Charging Station for a Taxi Fleet 2014 58 4

3 Soares F. J., Peças Lopes J. A., Rocha Almeida P. M., Moreira 

C. L., Seca L., A stochastic model to simulate electric vehicles motion 
and quantify the energy required from the grid. 17th Power Systems 
Computation Conference. Stockholm, August. 22-26. (2011).

 URL: http://pscc.ee.ethz.ch/uploads/tx_ethpublications/fp359.pdf
4 City Taxi (Hungarian taxi company) database for 50 taxis, data from 

Péter Bősz, commercial and marketing director
5 Xiaowei H., Shi A., Jian W., Exploring urban taxi drivers’ 

activity distribution based on GPS data. Mathematical Problems in 
Engineering. 2014. pp. 1-13. (2014).

 DOI: 10.1155/2014/708482
6 Marco V., Santi P., Carlos B., Urban mobility study using taxi 

traces. TDMA’11, September 18, 2011, Beijing, China.
 DOI: 10.1145/2030080.2030086
7 Marco V., Santi P., Carlos B., Patrick O., Nuno F., Exploratory 

study of urban flow using taxi traces. 1st International Workshop on 
Pervasive Urban Applications (PURBA). San Francisco, 12. June 2011.

 URL: http://wiki.amilab.dei.uc.pt/images/0/04/Veloso_2011_PURBA.pdf
8 Xi L., Li G., Yongxi G., Yu L., Revealing daily travel patterns and 

city structure with taxi trip data. submitted: 24. Oct. 2013. 
9 Jianting Z., Smarter outlier detection and deeper understanding 

of large-scale taxi trip records: A case study of NYC. Beijing, 18. 
September 2011.

 DOI: 10.1145/2346496.2346521
10 Peng C., Jin X., Wong K.-C., Shi M., Liò P. Collective Human 

Mobility Pattern from Taxi Trips in Urban Area. PLoS ONE 7(4). 
e34487. (2012).

 DOI: 10.1371/journal.pone.0034487
11 2014 Taxicab fact book. Available from: http://www.nyc.gov/html/tlc/

downloads/pdf/2014_taxicab_fact_book.pdf

12 Yu L., Chaogui K., Song G., Yu X., Yuan T., Understanding intra-
urban trip patterns from taxi trajectory data. Journal of Geographical 
Systems. 14(4). pp. 463-483. (2012). 

 DOI: 10.1007/s10109-012-0166-z
13 Xiao L., Jichang Z., Li D., Ke X., Unraveling the origin of 

exponential law in intra-urban human mobility. Scientific Reports. 3. 
2983. (2013).

 DOI: 10.1038/srep02983
14 Xiao L., Xudong Z., Weifeng L., Tongyu Z., Ke X., The scaling 

of human mobility by taxis is exponential. Physica A: Statistical 
Mechanics and its Applications. 391 (5). pp. 2135-2144. (2012).

 DOI: 10.1016/j.physa.2011.11.035
15 González M. C., Hidalgo, C. A., Barabási A.-L., Understanding 

individual human mobility patterns. Nature. 453. pp. 779-782. (2008).
 DOI: 10.1038/nature06958
16 Nicholas J. S., Examination of taxi travel patterns in Arlington 

County. MSc thesis, Virginia Tech. URL: http://scholar.lib.vt.edu/theses/
available/etd-05112012-115641/unrestricted/Nicholas_JN_T_2012.pdf

17 Christoforou Z., Milioti C., Perperidou D., Karlafits M. G., 

Investigation of taxi travel time characteristics. Transportation 
Research Board 90th Annual Meeting, 23-27. January, 2011. 

 DOI: 10.4399/97888548486722
18 Take charge - A roadmap to electric New York City taxis, NYC 

Taxi&Limousine Commission, December (2013). Available from: 
http://www.nyc.gov/html/tlc/downloads/pdf/electric_taxi_task_force_
report_20131231.pdf

19 http://www.mathwave.com/help/easyfit/ html/tools/assist.html
20 http://www.spritmonitor.de/en/

http://dx.doi.org/10.1155/2014/708482
http://dx.doi.org/10.1145/2346496.2346521
http://dx.doi.org/10.1371/journal.pone.0034487
http://www.nyc.gov/html/tlc/downloads/pdf/2014_taxicab_fact_book.pdf
http://www.nyc.gov/html/tlc/downloads/pdf/2014_taxicab_fact_book.pdf
http://dx.doi.org/10.1007/s10109-012-0166-z
http://dx.doi.org/10.1038/srep02983
http://dx.doi.org/10.1016/j.physa.2011.11.035
http://dx.doi.org/10.1038/nature06958
http://dx.doi.org/10.4399/97888548486722
http://www.nyc.gov/html/tlc/downloads/pdf/electric_taxi_task_force_report_20131231.pdf
http://www.nyc.gov/html/tlc/downloads/pdf/electric_taxi_task_force_report_20131231.pdf

	1 Introduction
	2 The stochastic model 
	2.1 Car usage characteristics 
	2.2 Fitting of distribution functions
	2.3 Transition probabilities 
	2.4 Energy consumption

	3 How the algorithm works 
	4 Simulation results 
	5 Further work
	6 Conclusions
	Acknowledgement  
	References

