
37The Effect of Latency Increasing 2014 58 2

The Effect of Latency Increasing on
the Realisation Cost in High Level
Synthesis of Pipeline Systems

György Pilászy / György Rácz / Péter Arató

received 27 August 2013; Accepted After revision 25 februAry 2014

Abstract
This paper examines the effects of increasing the latency in

pipeline systems. The high level synthesis methods focus on the
pipeline throughput only, and the latency is an output parame-
ter. The proposed method is capable for reducing the cost of the
implementation by increasing the latency at the same through-
put. The essence of the proposed method is that an increase in
the latency may increase the mobility ranges of the processing
units. Thus, the increased degrees of freedom may cause bet-
ter implementation by affecting the scheduling and allocation
steps. An impact assessment algorithm for calculating proper
latency increment range is also presented.

Keywords
Pipelining · latency time · HLS · CAD · microcontroller ·

multiprocessing · embedded systems

1 Introduction
During the high-level synthesis of the pipeline systems, the

most important parameter is the throughput [1, 3, 6]. The ef-
fect of increasing the latency period is not analysed. However,
a longer latency does not slow down the system in pipeline
sense, since the effect is negligible for the throughput.

One of the aims of this paper is to determine the effect of in-
creasing the latency to the cost function in the pipeline systems.
For demonstration, PIPE HLS tool (developed by BME-IIT) has
been used in the analysis, but the results are not affected by us-
ing commercial tools (e.g. Catapult C). The cost reduction is
expected, since the extent of overlapping between the elemen-
tary operations may be reduced by increasing the latency. Thus,
the scheduling and allocation steps of HLS may result in a less
expensive structure by taking advantage of better reusing situa-
tion. An illustration is shown in Figure 1. The processing of the
first data is marked in (red) dark, and of the second data in (blue)
bright. The unidirectional arrows represent the data dependence.
For simplicity, let the e1…e5 elementary operations be identical.
The processing time of each elementary operation is assumed 8
clock cycles. The elementary operations e2 and e3 start and finish
at the same time. Thus they can not be implemented in the same
processing unit. The overlapping will be eliminated, for exam-
ple, if e2 starts at a later time (t3). This case is shown in Figure 2.
It can be observed that the latency has increased, because of the
execution time of e2 and the data dependency.

58(2), pp. 37-42 (2014)
DOI:10.3311/PPee.7024

Creative Commons Attribution b

reseArch Article

György Pilászy

Department of Control Engineering and Information Technology,
Faculty of Electrical Engineering and Informatics, BME,
Magyar tudósok krt 2., H-1117 Budapest, Hungary
e-mail: gpilaszy@iit.bme.hu

György Rácz

Department of Control Engineering and Information Technology,
Faculty of Electrical Engineering and Informatics, BME,
Magyar tudósok krt 2., H-1117 Budapest, Hungary
e-mail: gyuriracz@iit.bme.hu

Péter Arató

Department of Control Engineering and Information Technology,
Faculty of Electrical Engineering and Informatics, BME,
Magyar tudósok krt 2., H-1117 Budapest, Hungary
e-mail: arato@iit.bme.hu Fig. 1. Scheduling of a pipeline system (L=31, R=25)

PPPeriodica Polytechnica
Electrical Engineering and Computer Science

http://dx.doi.org/10.3311/PPee.7024
mailto:gpilaszy@iit.bme.hu
mailto:gyuriracz@iit.bme.hu
mailto:arato@iit.bme.hu

38 Per. Pol. Elec. Eng. and Comp. Sci. György Pilászy / György Rácz / Péter Arató

Since one processing unit can perform at most three elementary
operations within the specified restart time (3 · 8 < R = 25), there-
fore at least two processing units should be used. This situation
is shown in Figure 2. The elementary operations e1, e2, e3, and
e4, e5 can be allocated into two processing units, respectively. In
consequence, the latency is increased by 1 (L = 32).

A further reduction of the required number of processing
units may be achieved by applying longer restart time. An ex-
treme situation is illustrated in Figure 3. This solution requires
only one processing unit, because there are no overlapped ele-
mentary operations, but there is no pipelining any more (R = L).

The organization of the remaining sections is as follows. In
section 2, a simple cost function will be assumed for illustrating
the effect of the longer latency, and then simulation results are
presented as case studies. In section 3, an algorithm is described
for calculating the increased latency. The paper ends with the
conclusion in section 4.

2 Case studies
In this section, we present examples to illustrate the cost re-

duction effect of the increased latency. Firstly, we define our
assumed simple cost function.

2.1 The simple cost function
In our example, each node of the input graph contains one

elementary operation. Let ti denote the execution or processing
time of the elementary operation ei. After the scheduling and
allocation steps, more elementary operations can be allocated
into one processing unit (Pi). The aim is to minimize the num-
ber of these processing units. Let Ci denote the cost of process-
ing unit Pi. If the number of processing unit Pi is ni

The simple total cost (C) is the sum of partial costs Ci:

By calculating this cost for the examples of Figures 1-3, the
results are shown in Table 1.

There are two ways for cost reduction by increasing the la-
tency. The simplest way is to increase the latency step-by-step
by one, to execute the whole HLS software each time and to
check the new total cost value. The disadvantage of this method
is the great number of re-run steps that takes too much time.
The other way is to determine only those latency increasing
steps in advance, which might decrease the total cost. Some
rules can be formulated for finding these favourable latency
increasing steps as follows.

If the same types of elementary operations start simultane-
ously, then the latency should be increased at least by the value
of the execution time in order to allocate them into the same
processing unit. For reusing a processing unit (Pi) k times with-
in a restart period (R), it is necessary that the overall execu-
tion time of elementary operations allocated into Pi must not be
greater than the restart time(R):

If the execution times of all elementary operations allocated
in Pi are identical, then
 must hold.

Further on, the above procedure is illustrated by a simple
benchmark from [1].

Fig. 2. Scheduling with increased latency (L=32, R=25)

Fig. 3. Scheduling with increased restart time and latency (L=40, R=40)

C n ti i i= ⋅

C C n ti
i

i i
i

= = ⋅
∀ ∀
∑ ∑

R L ni C

25 31 3 24

25 32 2 16

40 40 1 8

Tab. 1. The costs calculated for Figures 1..3

t Rk
k
∑ ≤ ,

k t Rk⋅ ≤

39The Effect of Latency Increasing 2014 58 2

2.2 FFT algorithm
In the following example [1], there is an eight-point FFT

(Fast Fourier Transformation) algorithm, the elementary op-
eration graph of which is shown in Figure 4. In Table 2, the
assumed execution times are summarized.

The initial value of the latency is L = 48. This is calculated
by PIPE from the original graph for R = 10 restart time. Since
the shortest elementary operation time (ti) is 3, the restart pe-
riod should be at least R>6 in order to achieve a beneficial ef-
fect by increasing L.

The time range of scanning the restart period: is chosen for
R = {12,…,49}

The range of the latency value: L = {48, 51, 54, 60, 96}
Table 3 shows the cost functions based on Table 2. The cost

functions are shown in Figure 5. The procedure has been car-
ried out also in case of multifunction execution units assumed
to be able to execute both SUM and ADD elementary opera-
tions. Table 4 shows the number of required multifunction ex-
ecution units. The cost functions are shown in Figure 6.

It can be observed, that the cost values are not always small-
er at the longest latency. The reason of this is the approximate
character of the scheduling algorithm actually applied in the
HLS tool. Namely, the start times of the elementary operations
are fixed somehow depending on each other, and so sometimes
stricter constraints may arise for the allocation algorithm. In the

above examples, the force-directed scheduler of the HLS tool
PIPE was applied.

2.3 Observations:
1. Increasing the latency value increases the mobility of the

elementary operations. The larger mobility increases the
running time of the scheduling and allocating algorithm
because of the higher degrees of freedom. However, this
higher degree of freedom may give better results.

2. If R ≤ 2∙min{ti}, then no significant decrease of the cost
can be expected, because of the replication and so with
frequent restarting, none of the execution units can be
reused.

3. If an ei elementary operation has the execution time ti ≥ R,
then no significant improvement can be expected in the
number of the units executing ei, because of the replica-
tion performed by the HLS tool [1].

3 The proposed algorithm
Let the following notations be introduced:

Lmin: the latency value determined by the HLS tool for the
desired restart time R

Tab. 2. Elementary operations of the FFT

Execution units Operation ti pieces

P1 MUL 12 12

P2 SUB 3 12

P3 ADD 3 12

Fig. 4. Elementary operation graph of the FFT algorithm

Fig. 5. Cost function of the FFT algorithm

Fig. 6. Cost function of the FFT algorithm in case of multifunction
execution units

40 Per. Pol. Elec. Eng. and Comp. Sci. György Pilászy / György Rácz / Péter Arató

Lmax: an arbitrary value (greater than Lmin) defined by the user,
typical value is 2·Lmin

ej: an elementary operation (a node) in EOG, the range of j
consists of the integers from 1 until the number of nodes
in EOG

E{e1,…ej, …em}: The set of the elementary operations in EOG.
ΦF{f1, f2, …, fk, …fn}: A complete cover of the elementary oper-

ations, where block fk contains all elementary operations
with type k. (It is cover, because one ej can be executed by
more than one execution unit.)

tk: the execution time of the elementary operations belong-
ing to block fk. (this value is identical for all operations
belonging to the same block).

nk: the number of the elementary operations in block fk

Pi: the execution unit type i defining an incomplete cover on
ΦF denoted by Φi, Te blocks of Φi contain those elemen-
tary operations from the blocks of ΦF, which are execut-
able by Pi

Mq: the q-th copy of an execution unit after the allocation (its
type is determined by a Pi

M{M1, …, Mq, …Mz}: the set of the necessary copies of the
execution units determined by the allocation.

ΠM {m1,…, mi,…mp}: the complete partition of the execution
unit copies. (Block mi contains all those copies Mq, the
type of which is determined by Pi.

Ni: the number of copies in bolck mi, i.e. the number of nec-
cessary copies of Pi.

Ti: the longest execution time of elementary operations which
are executable by Pi.

Ci: The cost of applying execution unit Pi determined by the
allocation: C N Ti i i= ⋅

C: the total cost: C Ci
i

= ∑

Cd: a minimal cost value, defined by the user for stop.
Nimin: the minimal number of Pi copies for a given restart time

R. This value of R could not be achieved by applying less
copies of Pi

Cmin: the minimal cost C Ti
i

min = ⋅∑Nimin

3.1 The main steps of the algorithm:
1. Determine the minimal value of the latency time (Lmin) by

the HLS tool. [1]
2. Determine to each Pi belong the minimal number of the

execution units (rounded up).

3. Determine the minimal cost (Cmin). In case of fixed restart
time (R), the lowest possible cost can be estimated by the
following equation:

If the value of R can be increased, then the theoretical
minimum cost is obtained when each elementary opera-
tion occur as few times as possible: n1 = n2 =… ni = 1.
Then the minimum cost value:

This result represents already a non pipeline situation,
because the elementary operations do not overlap each
other: R ≥ L.

4. Create sets M{M1, Mq, …, Mz} of execution units after the
allocation. To each Mq belongs the execution time ti .rep-
resenting the longest execution time of the elementary
operations executed by the execution units in Mi.

5. Create ΠM {m1,…,mi,…,mp} full partition of M according
to the Pi then select those, where |mi| > NiMIN and ti ≤ R/2

6. Select the smallest ti for incrementing L according to the
max(|mi|)

7. Increase the latency by the selected Ti and rerun the HLS
tool. (go to step 4.)

8. The new latency L+ti yields a new cost value C
9. There might be set a limit Lmax of incrementing the la-

tency. A possible default value could be: Lmax = 2·Lmin.
The stopping condition can be formulated in many ways.
One possibility is that we stop the iteration when we
reached the predefined maximum latency value (Lmax).
This condition can be tested easily.
Another possibility is that the iteration is continued until
the theoretically achievable minimum cost (Cmin) or a de-
sired cost (Cd) is reached.

The combination of both methods can give good results. In
each iteration step, it should be examined which of the above
conditions is achieved (Lmax or Cmin). If any of these conditions
are fulfilled, the iteration would be stopped.

4 Conclusion
The proposed method can reduce the cost of hardware imple-

mentation of a task by increasing the latency time in pipeline
systems while maintaining the same throughput. The method
helps in designating efficient ranges for incrementing the la-
tency, and enables the impact assessment of a range regarding
the total cost.

C N TiMIN i
i

min = ⋅
∀
∑

N n t
RiMIN
k k

k
=

⋅

∑

C Ti
i

min =
∀
∑

41The Effect of Latency Increasing 2014 58 2

1 Arató P., Visegrády T., Jankovits I., High Level Synthesis of Pipe-
lined Datapaths. New York: John Wiley & Sons, (2001).

2 Pilászy Gy., Móczár G., Remote control of modular microcontroller
systems, Microcad 2001. In: International Scientific Conference
Section F: Measurement and Automation. Miskolc, 1th March 2001-
2th March 2001, pp. 45-50, (2001).

3 Arató P., Drexler D., Kocza G., Suba G., Synthesis of a Task-
dependent Pipelined Multiprocessing Structure. ACM Transactions on
Design Automation of Electronic Systems. (submitted to)

4 Coussy P., Gajski D. D., Meredith M., Takach A., An Introduction
to High-Level Synthesis. IEEE Design & Test of Computers, 26 (4),
pp. 8-17, (2009).

 DOI: 10.1109/MDT.2009.69
5 Pilászy Gy., Rácz Gy., Arató P., Communication Time Estimation

in High Level Synthesis. Periodica Polytechnica Electrical
Engineering and Computer Science, 57 (4), pp. 99-103, (2013).

 DOI: 10.3311/PPee.7413

6 Fingeroff M. High-Level Synthesis Blue Book. Xlibris Corporation,
(2010).

7 Xu J., Wolf W., Henkel J., Chakradhar S., A design methodol-
ogy for application-specific networks-on-chip. ACM Transactions on
Embedded Computing Systems, 5 (2), pp. 263-280, (2006).

 DOI: 10.1145/1151074.1151076
8 Mann Z. Á., Orbán A., Arató, P., Finding optimal hardware/software

partitions. Formal Methods in System Design, 31 (3), pp. 241–263,
(2007).

 DOI: 10.1007/s10703-007-0039-0
9 Arató P., Mann Z. Á., Orbán A., Algorithmic aspects of hardware/

software partitioning. ACM Transactions on Design Automation of
Electronic Systems, 10 (1), pp. 136–156, (2005).

 DOI: 10.1145/1044111.1044119
10 Suba G., Hierarchical pipelining of nested loops in high-level syn-

thesis. submitted to Periodica Polytechnica Electrical Engineering and
Computer Science, 58, (2014).

 DOI: 10.3311/PPee.7610

References

Acknowledgement
The support of the Hungarian Scientific Fund (OTKA K72611) and New Hungary Development Plan (Project ID: TÁMOP-

4.2.1/B-09/1/KMR-2010-0002) IKT-P5-T3 are gratefully acknowledged. This work is also belonging to the scientific program of
the “Development of quality-oriented and harmonized R+D+I strategy and functional model at BME” project.

http://dx.doi.org/10.1109/MDT.2009.69
http://dx.doi.org/10.3311/PPee.7413
http://dx.doi.org/10.1145/1151074.1151076
http://dx.doi.org/10.1007/s10703-007-0039-0
http://dx.doi.org/10.1145/1044111.1044119
http://dx.doi.org/10.3311/PPee.7610
T�MOP-4.2.1/B-09/1/KMR
T�MOP-4.2.1/B-09/1/KMR

42 Per. Pol. Elec. Eng. and Comp. Sci. György Pilászy / György Rácz / Péter Arató

Tab. 4. Total cost of multifunction execution units of the FFT algorithm

R

L
=

48

L
=

51

L
=

54

L
=

60

L
=

96

C
m

in

13 168 168 174 174 174 162
14 180 180 174 171 177 150
15 180 180 174 171 174 135
16 186 186 186 186 171 123
17 186 186 186 186 180 123
18 186 186 186 183 180 108
19 186 180 186 180 180 108
20 183 183 174 180 180 108
21 183 183 183 180 177 96
22 180 174 180 180 177 96
23 177 180 180 177 171 96
24 180 177 174 177 171 81
25 180 177 174 174 174 81
26 180 177 171 162 147 81
27 174 177 171 171 174 81
28 165 165 150 156 138 81
29 162 162 165 159 138 69
30 138 138 138 105 102 69
31 138 138 138 117 114 69
32 129 129 129 108 105 69
33 132 132 126 96 96 69
34 120 120 111 108 105 69
35 120 120 120 108 90 69
36 120 120 120 108 102 54
37 120 108 108 111 87 54
38 120 120 120 108 93 54
39 108 108 117 108 93 54
40 120 108 108 108 102 54
41 108 108 105 102 90 54
42 108 117 105 102 87 54
43 96 93 102 102 87 54
44 96 93 102 105 84 54
45 72 78 81 93 99 54
46 72 69 78 81 90 54
47 72 69 78 81 93 54
48 72 81 78 66 81 42
49 72 84 63 75 63 42

Tab. 3. Total cost of execution units of the FFT algorithm
R L

=
48

L
=

51

L
=

54

L
=

60

L
=

96

C
m

in

13 168 174 174 171 177 162
14 180 180 177 174 174 150
15 180 180 174 171 174 138
16 186 189 189 183 174 126
17 186 186 186 186 180 126
18 174 195 195 195 183 108
19 174 186 186 189 180 108
20 180 186 186 183 186 108
21 180 186 186 183 186 96
22 174 189 186 177 174 96
23 174 174 180 180 177 96
24 174 180 186 177 174 84
25 174 177 180 168 174 84
26 180 177 177 177 147 84
27 180 177 177 171 156 84
28 156 162 159 144 120 84
29 144 168 159 153 126 72
30 120 144 144 123 96 72
31 114 132 132 135 96 72
32 114 126 126 105 111 72
33 108 114 108 120 111 72
34 120 120 123 111 99 72
35 120 120 120 108 111 72
36 120 120 120 120 108 54
37 120 120 120 111 105 54
38 120 120 120 108 105 54
39 120 120 120 120 93 54
40 120 120 120 120 105 54
41 96 111 111 111 90 54
42 96 105 111 105 87 54
43 96 93 96 102 102 54
44 96 81 96 90 75 54
45 84 93 93 78 87 54
46 84 69 105 93 90 54
47 84 81 69 93 78 54
48 84 69 90 87 81 42
49 84 69 81 81 78 42

	1 Introduction
	2 Case studies
	2.1 The simple cost function
	2.2 FFT algorithm
	2.3 Observations:

	3 The proposed algorithm
	4 Conclusion
	Acknowledgement
	References

