Enhancing the Mechanical Performance of Concrete Slabs through the Incorporation of Nano-sized Iron Oxide Particles (Fe2O3)

Non-local Bending Analysis

Authors

  • Amar Kecir
    Affiliation

    Laboratoire des Structures et Matériaux Avancés dans le Génie Civil et Travaux Publics, University of Djillali Liabes, P. O. B. 89, Sidi Bel-Abbes 22000, Algeria

  • Mohammed Chatbi
    Affiliation

    Laboratoire des Structures et Matériaux Avancés dans le Génie Civil et Travaux Publics, University of Djillali Liabes, P. O. B. 89, Sidi Bel-Abbes 22000, Algeria

  • Zouaoui R. Harrat
    Affiliation

    Laboratoire des Structures et Matériaux Avancés dans le Génie Civil et Travaux Publics, University of Djillali Liabes, P. O. B. 89, Sidi Bel-Abbes 22000, Algeria

  • Mohamed Bachir Bouiadjra
    Affiliation

    Laboratoire des Structures et Matériaux Avancés dans le Génie Civil et Travaux Publics, University of Djillali Liabes, P. O. B. 89, Sidi Bel-Abbes 22000, Algeria
    Thematic Agency for Research in Science and Technology, ATRST, P. O. B. 62, El Harrach 16004, Algeria

  • Mohammed Bouremana
    Affiliation

    Laboratoire des Structures et Matériaux Avancés dans le Génie Civil et Travaux Publics, University of Djillali Liabes, P. O. B. 89, Sidi Bel-Abbes 22000, Algeria

  • Baghdad Krour
    Affiliation

    Laboratoire des Structures et Matériaux Avancés dans le Génie Civil et Travaux Publics, University of Djillali Liabes, P. O. B. 89, Sidi Bel-Abbes 22000, Algeria

https://doi.org/10.3311/PPci.23016

Abstract

The utilization of recycled iron in durable concrete production has gained attention for enhancing sustainability and resource efficiency. Simultaneously, incorporating nanoparticles as supplementary cementitious materials (SCMs) offers significant benefits. Introducing nano-sized iron particles (Fe2O3) into the cement paste results in a compact microstructure, improving strength, and durability. In this study, we investigate the bending behavior of concrete slabs reinforced with Fe2O3 nanoparticles using the non-local quasi-3D shear deformation theory based on Eringen's non-local differential constitutive relations. To characterize the elastic material properties of the nanocomposite, we employ Eshelby's homogenization model. In order to extend the applicability of our findings, we assume that the concrete plate rests on Kerr's foundation, which includes a shear layer connected to upper and lower springs. By deriving the equations of motion using the principle of virtual work, we establish a comprehensive framework for analyzing the bending of the concrete plate. To solve the equilibrium equations for a simply supported concrete plate, we present Navier's analytical solutions. Our investigation considers various influential parameters, such as the concentration of Fe2O3 nanoparticles in the concrete matrix, the elastic constants of the soil medium, different types of bending loads, and size-dependent nonlocal parameters. One of the most captivating findings of this study is that the incorporation of 30 wt% of iron nanoparticles in concrete leads to a remarkable improvement of 60% in the elastic properties of the material. Additionally, this same amount of iron nanoparticles has shown the potential to reduce the deflection of thin plates by over 60%.

Keywords:

nano-composite concrete, Fe2O3 nanoparticles, bending analysis, Quasi-3D theory, Eringen's non-local theory, Kerr's elastic foundation

Citation data from Crossref and Scopus

Published Online

2024-04-18

How to Cite

Kecir, A., Chatbi, M., Harrat, Z. R., Bachir Bouiadjra, M., Bouremana, M., Krour, B. “Enhancing the Mechanical Performance of Concrete Slabs through the Incorporation of Nano-sized Iron Oxide Particles (Fe2O3): Non-local Bending Analysis”, Periodica Polytechnica Civil Engineering, 2024. https://doi.org/10.3311/PPci.23016

Issue

Section

Research Article