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Abstract

Resource allocation project scheduling problem (RCPSP) has

been one of the challenging subjects among researchers in the

last decades. Though several methods have been adopted to

solve this problem, however, new metahuristics are available to

solve this problem for finding better solution with less compu-

tational time. In this paper two new metahuristic algorithms

are applied for solving this problem known as charged system

search (CSS) and colliding body optimization (CBO). The re-

sults show that both of these algorithms find reasonable solu-

tions, however CBO could find the result in a less computational

time having a better quality. Two case studies are conducted to

evaluate the performance and applicability of the proposed al-

gorithms.
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1 Introduction

Project management is the application of knowledge, skills,

tools, and techniques to project activities to meet the project

requirements [1]. The activity networks of the construction

projects are formed on the basis of precedence constraints. Also

each activity of the project can be included in several modes for

execution. Each mode has a different effect on the duration of

the activity and its resource requirement [2].

Various quantitative types of methods to project management

have been suggested since the 1950s. In the first type of meth-

ods, such as CPM and PERT, the durations of the activities were

the only variables and the resource availability which could af-

fect resource allocation and the entire project scheduling, was

not considered so this is one of the major limitations of these

methods [3, 4] Therefore, many researchers focused on tech-

niques and optimization methods for project scheduling. The

results of these studies in the literature can be classified in four

categories: resource constraint scheduling, time cost trade-off,

resource leveling and resource allocation [5]

In the case of resource constraint project scheduling problem

(RCPSP), the purpose is to minimize the project construction

time, considering that each activity must be scheduled according

to resource constraints and precedence relationships between ac-

tivities [6, 7]. The RCPSP is strongly NP-hard [8] and several

searching methods including exact methods [9–11] (as dynamic

programming, enumeration algorithm, branch and bound algo-

rithms), heuristic [12–14] (as Lagrangian heuristic) and meta-

heuristic [2, 4, 15–17] (as genetic algorithm, simulated anneal-

ing, particle swarm optimization, ant colony algorithm) proce-

dures have been suggested to solve this problem with many dif-

ferent assumptions.

A generalization of the RCPSP is the multi-mode resource-

constrained project scheduling problem (MRCPSP) where sev-

eral performing modes are considered for each activity. In

this problem, three basic categories of resources (i.e. renew-

able, nonrenewable, and doubly constrained ones) are consid-

ered. The temporary availability of a renewable resource is con-

strained at every moment of the planning horizon (as labor, ma-

chinery, equipment, etc.). The integral availability of a nonre-
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newable resource is restricted for the entire project or a specific

time interval (as budget). In addition, for a doubly constrained

resource, the availability is limited both for the entire project and

at every moment. An activity can either consume (as money) or

use (as blades) this kind of resources during its accomplishment

[3]

Since MRCPSP is a generalization of the RCPSP, this is also

NP-hard. Moreover, in the case of more than one nonrenewable

resource, the problem of finding a feasible solution (schedule)

is already NP-complete [18] Consequently, in large and highly

resource-constrained problems, none of the exact algorithms is

able to find the best solution in a reasonable time [19]

Among the RCPSPs, the discrete time-cost tradeoff prob-

lem (DTCTP) is a well-known problem where the processing

time of an activity is a discrete, non-increasing function of the

amount of a single nonrenewable resource allocated to this ac-

tivity. Therefore, according to all possible resource allocations,

each activity can be performed in several modes [3] This means

that in this case, both the time–cost tradeoff and resource con-

straint project scheduling problems should be considered simul-

taneously.

The DTCTP has three sub-problems in which the process is

to select activities execution modes depending on following ob-

jectives [20] The first is to minimize the project total cost while

meeting a given project deadline (deadline problem), the second

is minimizing the project total duration for a given non-negative

budget (budget problem) and the third is to construct the com-

plete and efficient time–cost profile over the feasible project du-

rations (time-cost curve problem). Though the researchers have

studied the DTCTP for many years, however, there are still some

defects in considering all the aspects of project management and

scheduling. Most of DTCTP researchers had more attention to

the nonrenewable resources than renewable ones and the im-

portance of the renewable resources have not been considered

adequately [17]. However, total time and cost of real construc-

tion projects are affected by many various kinds of renewable

resources such as manpower, machines, equipment and etc. [5]

In this paper, a multi-mode resource constrained discrete

time-cost tradeoff model (MRC-DTCTP) is developed that con-

siders MRCPSP, DTCTP and resource allocation simultane-

ously based on recent researches. The main goal is to utilize

two new and efficient algorithms for these problems and com-

pare the quality of the solutions. Charged System Search (CSS)

developed by Kaveh and Talatahari [21] and Colliding Body Op-

timization (CBO) developed by Kaveh and Mahdavi [22,23] are

the methods. Then two case studies have been conducted to

evaluate the performance and applicability of the proposed al-

gorithms.

The structure of the paper is as follows: in Section 2, the

problem is described briefly and the mathematical model of the

problem is presented. In Section 3, the algorithms used, CSS

and CBO, are explained in detail. Section 4 shows the compu-

tational results, and finally, the concluding remarks are detailed

in Section 5.

2 Problem formulation

2.1 Proposed MRC-DTCTP model

The problem studied in this paper is a multi-mode resource-

constrained discrete time–cost tradeoff problem which involves

the scheduling of j = 1, . . . , J activities that are described in an

activity-on-node (AON) network G = (V, E), where the nodes

and arcs represent the set of activities V and finish-to-start prece-

dence relationship (with lag 0) E, respectively. The number of

activities in the project network is from 0 to J + 1, where ac-

tivities 0 and J + 1 are dummy activities that belong to the start

and the end of the project. Precedence relationships between

some of the activities in the project, necessitate that an activity j

cannot be started before all its predecessors P j are finished due

to the technological requirements. According to MRCPSP and

DTCTP models, each activity j ∈ V may be executed in one

of several different modes of accomplishment given by the set

M j = 1; . . . ; M j. Activity j performed in mode m ∈ M j, re-

quires r jmk renewable resource k ∈
{
1, . . . , M j

}
for each period

of execution, and c jm is the direct cost for the execution in the

related mode. The time that activity j is executed in mode m,

d jm, is supposed to be a discrete and non-increasing function of

both, the amount of resource allocated to it, and the direct cost

of executing the activity. When the activity j starts its execution

in mode m, any interruption, such as changing the mode is not

allowable and it must be continuing in d jm consecutive periods.

Moreover the project constrains renewable resources in periods

and for each renewable resource k ∈ {1, . . . , K}, its availability

per period is constant and given by Rk.

This paper aims at solving MRC-DTCTP optimization model

using charged system search (CSS) [21] and colliding body op-

timization (CBO) [22,23] algorithms introduced by Kaveh et al.

(see Kaveh [24] as well). The purpose is to achieve a solution

with the minimum total time and cost, considering precedence

relations between different activities and resource constrains in

one project. The objective functions of the MRC-DTCTP model

are formulated to minimize the total project time and cost along

with allocation of resources in the entire project makespan, si-

multaneously.

When the execution mode of an activity is selected, the corre-

sponding activity duration, direct cost and resource requirement

will be assigned. Afterwards, a feasible schedule based on ac-

tivity mode information and given constraints will be produced.

The outcome of the resulting schedule is the determination of

the project time and the direct cost.

1 The first objective of our MRC-DTCTP model is to minimize

duration of the project, which is the finish time of last activity

f j in a project. Therefore the total project duration Ft is:

Ft = fJ (1)
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2 The second objective of our MRC-DTCTP model is to min-

imize the total project cost. In general, the cost of a project

can be divided into two parts: direct cost and indirect cost.

The costs directly related to the execution of activities in the

project are direct costs. These are mainly dependant on the

amount of renewable resources occupied by the activities. It

means that for one specific activity, execution mode with a

more renewable resource requirement has usually a greater di-

rect cost with a shorter duration. The other part of the project

cost is called an indirect cost because it can be related to no

execution of activity in the project and it is paid by functional

department. In this model, we assume that an indirect cost

is a fixed amount in each period of construction time and its

amount varies with project duration for the entire project. The

direct cost for the entire project depends on the modes that

have been selected for the activities and its amount is the sum

of activities execution costs. Therefore, the project cost Fc

can be formulated as follows [17]:

FC =
∑

j

∑
m∈M j

(
x jm × c jm

)
+ f j×ci+y j×cp×

(
f j − Tcontract

)
(2)

In this relationship, the first term is the project direct cost

(
∑

j

∑
m∈M j

(x jm × c jm)), where c jm is the direct cost of activity

j when executes in mode m. In addition, x jm is a decision

variable:

x jm =

 1 if activity j executed in mode m

0 otherwise

The second term is the project indirect cost
(

f j × ci

)
, where

ci is a fixed amount which is considered as indirect cost per

period in the project makespan.

The last term in the formula is for considering penalty when

the project duration is longer than the project makespan in

the contract
(
y j × cp ×

(
f j − Tcontract

))
. Tcontract is the project

deadline that is mentioned in the project contract and cp is a

penalty in each period of delay. y j also is a decision variable:

y j =

 1 f j > Tcontract

0 f j ≤ Tcontract

2.2 Mathematical model of MRC-DTCTP

According to the method of calculation utilized for project

cost and the time mentioned in the former section, the model

of MRC-DTCTP is built based on MRCPSP and DTCTP.

The MRC-DTCTP has three sub-problems similar to DTCTP:

Eq. (1) the deadline problem, minimizing total cost consider-

ing project deadline; Eq. (2) the budget problem, minimizing

the makespan considering a given non-negative budget; and

Eq. (3) the time–cost curve problem, to generate the complete

time–cost trade-off profile for a project with constrained re-

source and discrete time–cost relationship. In this research,

normalization is used for multi-objective optimization. In ad-

dition, an importance factor for each objective is introduced

to enable the decision-maker to control the effect of each ob-

jective on the final solution.

The model of the MRC-DTCTP is formulated as follows [17]:

minF t (3)

minFc (4)

subject to ∑
m∈M j

x jm = 1 j ∈ V (5)

f j −
∑

m∈M j

(x jm · d jm) ≥ fi ∀ (i, j) ∈ E (6)

∑
j∈At

∑
m∈M j

(
x jm × r jmk

)
≤ Rk k = 1, . . . ,K,

At =
{
j| f j − d j < t ≤ f j

} (7)

In the above formulation, the objective function Eq. (3) mini-

mizes the project time, which is calculated by Eq. (1), and the

objective function Eq. (4) minimizes the project cost, which is

calculated by Eq. (2). Constraint set Eq. (5) requires every ac-

tivity to be executed in only one mode. Constraint set Eq. (6)

represents the precedence relationships, where d jm is the du-

ration of an activity j when activity j is executed in mode m.

Finally Constraint set Eq. (7) indicates that for each time in-

stant t and for each resource type k, the renewable resource

amounts required by the activities which are currently pro-

cessed (i.e. At) cannot exceed the resource availability, where

r jmk is the amount of resource k required by activity j if it is

executed in mode m.

3 Metahuristic algorithms

The main purpose of this paper is to optimize time–cost trade-

off, which is formulated as a multi-objective optimization

problem and search for solutions that minimize the total dura-

tion and the total cost simultaneously. In the multi-objective

problems, often some of the criteria are in conflict with each

other, i.e. for an improvement in one objective, another ob-

jective must be sacrificed. Because of this, we used an impor-

tance factor for each objective that specify preferences among

the objectives.

To search for solutions, two meta-heuristic algorithms

(Charged System Search (CSS) and Colliding Body Opti-

mization (CBO)) are designed for implementing the multi-

objective optimization. The CSS [21] and CBO [22, 23], de-

veloped by Kaveh and Talatahari, and Kaveh and Mahdavi,

respectively, are two efficient methods that have not been used

for this problem up to now [24].
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3.1 Charged System Search

The charged System Search (CSS) is a population-based

meta-heuristic algorithm proposed by Kaveh and Talatahari

[21], which is based on laws from electrostatics and Newto-

nian mechanics laws. All of the following explanation about

this method, including definitions and formulas, are extracted

from Kaveh and Talatahari [21].

The Coulomb and Gauss laws provide the magnitude of the

electric field
(
Ei j

)
at a point inside and outside a charged in-

sulating solid sphere, respectively, as follows [21]:

Ei j =


keqi

a3 ri j i f ri j < a
keqi

r2
i j

i f ri j ≥ a
(8)

where ke is the Coulomb constant, ri j is the separation of the

center of sphere and the selected point, qi is the magnitude of

the charge; and a is the radius of the charged sphere. Using

the principle of superposition, the resulting electric force due

to N charged spheres
(
F j

)
is as follows [21]:

F j = keq

N∑
i=1

 qi

a3
ri j · i1 +

qi

r2
i j

· i2

 ri − r j

ri − r j i1 = 1, i2 = 0↔ ri j < a

i1 = 0, i2 = 1↔ ri j ≥ a

(9)

Also according to the Newtonian mechanics, we have [21]:

∆r = rnew − rold

V =
rnew − rold

∆t

a =
vnew − vold

∆t

(10)

where rold and rnew are the initial and final positions of the

particle, respectively, v is the velocity of the particle; and a is

the acceleration of the particle. Combining the above equa-

tions and using the Newton’s second law, the displacement of

any object as a function of time is obtained as [21]:

rnew =
1

2

F

M
· ∆t2 + vold + rold (11)

In the CSS method, each solution is considered as a charged

particle (CP) in an n-dimensional space, which n is the num-

ber of decision variables. The convergence process is carried

out through the movements of these particles in the search

space. The fore-mentioned electrostatics and mechanics laws

govern the forces between these CPs and their movements.

The pseudo-code of the CSS algorithm can be summarized as

follows:

Level 1: Initialization Step 1. Initialization. In this step, the

parameters of the CSS algorithm are initialized as follows.

Initialize an array of charged particles (CPs) with random po-

sitions. The initial velocities of CPs are considered as zero.

Each CP has a charge of magnitude (q) which its value is cal-

culated as:

qi =
f it (i) − f itworst

f itbest − f itworst

; i = 1, 2, . . . ,N (12)

where f itbest and f itworst are the best and the worst fitness

of all the particles; f it (i) represents the fitness of particle i.

The separation distance
(
ri j

)
between two charged particles is

defined as:

ri j =

∥∥∥Xi − X j

∥∥∥∥∥∥∥ (Xi+X j)

2
− Xbest

∥∥∥∥ + ε
(13)

where Xi and X j are the positions of the i− th and j− th CPs,

respectively; Xbest is the position of the best current CP; and

ε is a small positive number to avoid singularities.

Step 2. CP ranking. Evaluate the values of the fitness function

for the CPs, compare and sort them in an increasing order.

Step 3. Charged memory (CM) creation. Store the number

of the first CPs equal to the charged memory size (CMs) and

their related values of the fitness functions in the (CM).

Level 2: Search

Step 1. Attracting force determination. Determine the prob-

ability of moving each CP toward the others considering the

following probability function:

pi j =

 1
f it(i)− f itbest

f it( j)− f it(i)
> rand ∨ f it(i) > f it( j)

0 else
(14)

and calculate the attracting force vector for each CP as fol-

lows:

Fi j = q j

∑
i,i, j

 qi

a3
ri j · i1 +

qi

r2
i j

· i2

 pi j

(
Xi − X j

)
(15)


j = 1, 2, . . . ,N

i1 = 1, i2 = 0↔ ri j < a

i1 = 0, i2 = 1↔ ri j ≥ a

where F j is the resultant force affecting the jth CP.

Step 2. Solution construction. Move each CP to the new

position and find its velocity using the following equations:

X j,new = rand j1×ka×
F j

m j

×t2+rand j2×kv×V j,old×t+X j,old (16)

V j,new =
X j,new − X j,old

∆t
(17)

where rand j1 and rand j2 are two random numbers uniformly

distributed in the range (1, 0); m j is the mass of the CPs,

which is equal to q j in this paper. ∆t is the time step, and

it is set to 1. ka is the acceleration coefficient; kv is the veloc-

ity coefficient to control the influence of the previous velocity.

In this paper, kv and ka are taken as:

ka = c1 (1 + iter/itermax) (18)
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kv = c2 (1 − iter/itermax) (19)

where c1 and c2 are two constants to control the exploitation

and exploration of the algorithm; iter is the iteration number

and itermax is the maximum number of iterations.

Step 3. CP position correction. If each CP exits from the

allowable search space, correct its position.

Step 4. CP ranking. Evaluate and compare the values of the

fitness function for the new CPs; and sort them in an increas-

ing order.

Step 5. CM updating. If some new CP vectors are better than

the worst ones in the CM, in terms of their objective function

values, include the better vectors in the CM and exclude the

worst ones from the CM.

Level 3: Controlling the terminating criterion. Repeat the

search level steps until a terminating criterion is satisfied.

3.2 Colliding Body Optimization

The Colliding Body Optimization (CBO) algorithm is devel-

oped based on one-dimensional collision laws [22]. Consider

two moving bodies with masses of m1,m2and velocities of

v1, v2. These two bodies collide with one another. All of

the following explanation about this method, including def-

initions and formulas, are presented in Ref. [22]. According

to the laws of physics, the total momentum and energy of the

system after and before the collision are conserved. It can be

expressed as:

m1v1 + m2v2 = m1v′1 + m2v′2 (20)

and

1

2
m1v2

1 +
1

2
m2v2

2 =
1

2
m1v′1

2
+

1

2
m2v′2

2
+ Q (21)

where v1 and v2 are the velocities of the first and second body

before collision, respectively; v′
1

and v′
2

are the velocities of

the first and second body after collision, respectively; m1 and

m2 are the masses of the first and second body, respectively;

and Q is the loss of kinetic energy due to collision [22]. The

velocities of two bodies after a one-dimensional collision can

be obtained as:

v′1 =
(m1 − εm2) v1 + (m2 + εm2) v2

m1 + m2

(22)

v′2 =
(m2 − εm1) v2 + (m1 + εm1) v1

m1 + m2

where ε is coefficient of restitution (COR) of two colliding

bodies, which defined as:

ε =
|v′2 − v′1|

|v2 − v1|
=

v′

v
(23)

For most real objects, ε is between 0 and 1.

In the CBO method, each solution is considered as a colliding

body CB that candidate Xi containing a number of variables

[
i.e., Xi =

(
Xi, j

)]
. The CBs are composed of two equal main

groups, namely, stationary and moving objects, in which the

moving objects move to follow the stationary objects, and a

collision occurs between pairs of objects. This is happened

for two purposes: 1) to improve of the moving objects po-

sitions and 2) to push stationary objects towards better posi-

tions. The pseudo-code of the CBO algorithm can be summa-

rized as follows:

1 The initial positions of CBs are determined with random ini-

tialization in the search space:

x0
i = xmin + rand (xmax − xmin) i = 1, 2, . . . , 2n (24)

where x0
i

determines the initial value of the i − thCB; xmin

and xmax are the minimum and the maximum allowable val-

ues vector for the variables; rand is a random number in the

interval [0,1]; and 2n is the number of CBs.

2 The magnitude of the body mass for each CB is defined as:

mk =

1
f it(k)∑n

i=1
1

f it(i)

k = 1, 2, . . . 2n (25)

where f it (i) represents the fitness of the i− th agent; and 2n is

the number of population size. Clearly a CB with good values

has a larger mass than the bad ones.

3 The arrangement of the CBs fitness values is performed in an

ascending order. The sorted CBs are divided equally into two

groups.

The lower half of CBs are stationary bodies. These CBs are

good agents and velocity of these bodies before collision is

zero. Thus:

vi = 0 i = 1, . . . . . . , n (26)

The upper half of the CBs are moving bodies, which move

toward the lower half. The better and worse CBs, i.e., bodies

with upper and lower fitness values of each group will collide

together. The velocity of these bodies before collision is as:

vi = xi − xi−n i = n + 1, . . . . . . , 2n (27)

where xi is position vector of the i − th CB in this group and

xi−n is i − th CB pair position of xi in the previous group.

4 After the collision, the velocity of bodies in each group is

calculated using forementioned equations. The velocity of

moving CBs after the collision is:

v′i =
(mi − εmi−n) vi

mi + mi−n

i = n + 1, . . . , 2n (28)

where mi is the mass of the i − th CB and mi−n is the mass of

the i − th CB pair. Also, the velocity of stationary CBs after

the collision is:

v′i =
(mi+n + εmi+n) vi+n

mi + mi+n

i = 1, . . . , n (29)
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(a) The flowchart of the CSS algorithm [21]; (b) The flowchart of the CBO algorithm [22]

Fig. 1.

where mi is the mass of the i − th CB; mi+n is the mass of the

i − th moving CB pair; and ε is COR and is defined as the

ratio of the separation velocity of two bodies after collision

to approach velocity of two bodies before collision. In this

algorithm, the index is defined to control of the exploration

and exploitation rates. For this purpose, the COR decreases

linearly from unit value to zero. Thus, ε is defined as:

ε = 1 −
iter

itermax

(30)

where iter is the current iteration number and itermax is the

maximum number of iterations, which COR equal to unit and

zero represent the global and local search, respectively. In

this way a good balance between the global and local search

is achieved by increasing the iteration.

5 The new positions of CBs are obtained using the generated

velocities after the collision in position of stationary CBs. The

new positions of moving CBs is:

xnew
i = xi−n + rand◦v′i i = n + 1, . . . . . . , 2n (31)

where xnew
i

and v′
i

are new position and the velocity after the

collision of the i− th moving CB, respectively; and xi−n is the

old position of the i − th stationary CB pair. Also, the new

position of each stationary CB is:

xnew
i = xi + rand◦v′i i = 1, . . . . . . , n (32)

where xnew
j

, xi, and v′
i

are the new position, old position, and

the velocity after the collision of the i − th stationary CB, re-

spectively. Here rand is a random vector uniformly distributed

in the range (-1, 1) and the sign o denotes an element-by-

element multiplication.

6 The optimization is repeated from Step 2 until a termination

criterion, specified as the maximum number of iterations, is

fulfilled.

4 Model application and discussion of the results

Two case studies have been chosen for verification and to

show the effectiveness of the proposed MRC-DTCTP model us-

ing CSS and CBO. The first case study is a simple project, which

is adapted from Hartmann [2] for model verification and the

second one is a simplified real warehouse construction project

for demonstration of model application. The algorithms have

been coded in MATLAB R2013a language and the experiment

has been performed on a personal computer with Intel®Core™2
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Tab. 1. Activity data of case study 1 adapted from Hartmann [2]

Act ID Execution mode Duration (days)
Resource

requirement
Direct cost ($1000)

1
1 3 2 5

2 4 1 1

2
1 2 3 6

2 4 3 2

3
1 2 4 2

2 3 2 2

4
1 2 3 6

2 2 4 4

5
1 3 3 1

2 3 1 7

6
1 4 2 1

2 6 1 1

Duo CPU with 4 GB RAM under the windows 7 Ultimate 32-bit

operating system. The detailed case studies and the results are

as follows:

4.1 Case Study 1: Model Verification

Fig. 2. Activity network of project instance adapted from Hartmann [2]

The network of this project is as in Fig. 2 and the information

of the activities including number of modes, durations, resource

requirements and direct costs are given in the Table 1. In this

case study, there is one renewable resource and its availability is

4 per period. The indirect cost of this project is considered to be

$500 per day. Also in the contract mentioned that the deadline

of the project is 18 days and the contractor must pay $1000 per

day for a delay.

As mentioned in the problem formulation section, there are

two objective functions stated in Eqs. (1) and (2) that will form

the search space {Time and Cost}. In this simple case, the prob-

lem was solved by means of complete enumeration, and entire

the search space was checked and all the possible schedules with

different fitnesses were compared. The result of examination il-

lustrate that the best solution for this case considering both ob-

jective functions, is 12 days and $17000 (Fig. 3).

The presented models, with considering a population size of

200 are solved, the CSS model obtained the best solution in

Fig. 3. Schedule of the best Solution

2.9 sec and the CBO model obtained this result in 1.5 sec. The

process of optimization shown in Figs. 4 and 5.

Figs. 4 and 5 show that the CBO method has find the best

solution in the 7th iteration and the SCC method has find it in

the 17th iteration. Also total time that need for finding the best

solution in the CBO method is about a half against CSS method.

Although both of them could find the best solution.

4.2 Case Study 2: Real Project

This case is a simplified warehouse construction project con-

sists of 37 activities. The case is used to demonstrate the ap-

plication of the models in real environment. The problem mod-

ified according to the model requirements. Activity details of

the project are shown in the Table 2. There is one renewable

resource in this case and its availability is 12 labors per day. In

addition, the indirect cost of the project has been considered $0

per day. The purpose of this case study is to find solutions of

CSS and CBO models and make a comparison between models.

In both CSS and CBO of this research, the population size and

number of iteration were 400 and 100, respectively.

The model has run by CSS and CBO methods for several
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Tab. 2. Activity data of case study 2

Act description Execution mode Duration (days) predecessor
Labor requirement

(men)
Direct cost ($1000)

Mobilization and site

facilities
1 25 - 2 5

Soil test 1 11 - 2 2.2

Excavation work
1 21

1
4 8.4

2 16 6 9.6

Piling work
1 20

1
5 10

2 18 6 10.8

Pile loading test 1 15 2 2 3

Backfilling and 1 9
4

3 2.7

M&E work 2 6 5 3

Pile cap work
1 14

2,4
4 5.6

2 10 6 6

Column rebar and

M&E work
1 10 5 5 5

Slab casting
1 12

3,6,7
5 6

2 11 6 6.6

Column formwork 1 10 8 4 4

Roof beam and slab

formwork
1 12 9 5 6

Column casting 1 10 10 4 4

Roof beam and slab

rebar
1 10 11,12 5 5

Roof parapet wall

casting
1 14 12 5 7

M & E work 1 1 7 12 4 2.8

Door and window

frame
1 7 14 3 2.1

M & E work 2 1 7 13,14 4 2.8

Roof slab casting
1 12

15
4 2.4

2 9 6 5.4

Plastering work 1 10 16,17 4 4

Brick wall laying
1 14

18
4 5.6

2 10 6 6

Ceiling skimming

work
1 7 11 4 2.8

Toilet floor and 1 14
20

3 4.2

wall tiling work 2 10 5 5

Drain work 1 10 19,21 4 4

Apron slab casting 1 9 21,23 5 4.5

Door and window 1 7 22 5 3.5

Painting work 1 14 19,22 4 5.6

Fencing work 1 16 24 5 8

External wall 1 10
25

4 4

plastering 2 9 5 4.5

Electrical final fix 1 6 25 2 1.2

Main gate installation 1 3 24,27 3 0.9

External wall painting 1 12 29 4 4.8

Qualified person

inspection
1 5 27,30 2 1

Landscape work 1 10 28,31 2 2

Registered inspector

inspection
1 7 32,33 1 0.7

Authority inspection 1 7 34 1 0.7

Defect work 1 14 35 1 1.4

Project handover 1 1 36 1 0.1
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Tab. 3. Results of the case study 2

CSS Model CBO Model

Time

Importance

Factor

Cost

Importance

Factor

Duration Cost Duration Cost

70 30 187 148.7 182 149.6

60 40 189 147.8 184 149

50 50 192 147 186 148.8

40 60 193 146.4 191 147.2

30 70 205 145.9 193 146.4

Fig. 4. Optimization process of the CSS model

time. The range of obtained time and cost was 182 - 205 and

$145,900 - $149,600, for different time/cost ratio factor. Table 3

shows the results of models according to different ratio of time

and cost. Also this is important to say that, the CBO model to

find the best solution is faster than CSS model.

The Tables 2 and 3 show that when the time importance factor

is bigger than the cost ones, the duration of project will be min-

imized and vice versa. Fig. 6 shows a Pareto front of time-cost

of the project during different time/cost ratio.

5 Conclusion

In this study, the application of two meta-heuristic algorithms,

namely charged system search (CSS) and colliding body op-

timization (CBO), are introduced to solve the multi-mode re-

source constrained project scheduling problem (MRCPSP), the

discrete time-cost tradeoff problem (DTCTP), and the resource

allocation simultaneously. These problems are well-established

scheduling problems.

To validate the models, a simple project adapted from Hart-

mann [2] is used. The results verified the effectiveness of the

models. Then w the models are tested for a larger real construc-

tion project. The solutions of this case study show that the CBO

model obtains better solutions in a faster process, in comparison

to the CSS model. In both case studies, it is assumed that there

is no preference on project time and cost in the optimization,

but an importance factor is considered for each objective func-

tion that the manager can easily make a decision according to

the given preferences.

Finding also elaborates that both proposed metahuristics in

the considered problems are capable of solving the MRCPSP-

DTCTP.
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Fig. 5. Optimization process of the CBO model

Fig. 6. Pareto front of time-cost of the project during different time/cost ratio
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