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Abstract

Durability of steel fibre reinforced concrete (SFRC) speci-

mens is tested and evaluated. Concrete is mixed with moderately

sulphate resistant CEM I 42.5 cement and does not contain air-

entraining agent. The aim of the research is to study how the

dosage of high bond crimped steel fibre influences the durability

damage kinetics of SFRC; freeze-thaw resistance, de-icing salt

scaling resistance and resistance to water penetration are stud-

ied, completed with basic mechanical performance tests (com-

pressive strength, modulus of elasticity, flexural tensile strength,

splitting tensile strength, flexural toughness, fracture toughness,

apparent porosity and vacuum water absorption). Results reveal

the importance of the increased volume of the interface transi-

tion zone (ITZ) around the steel fibres in the first freeze-thaw

cycles and the importance of the internal restrain activated by

the steel fibres during later freeze-thaw cycles.
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1 Introduction

Steel fibre reinforced concrete (SFRC) is a widely used con-

struction material in civil engineering for several decades as the

fabrication of this composite is relatively simple. Key issue is

the improved toughness and shear capacity of SFRC [1–6] that

makes possible to increase ductility of structural members and

avoid brittle failure by additional energy absorbing capacity pro-

vided by the randomly distributed fibres in the concrete matrix

[7–10]. Recent advances address the use of glass, polymer, car-

bon, basalt and natural fibres as well as high strength concrete

(HSC) to deliver further advantageous applications [11–13].

Considerable amount of data are available in the technical lit-

erature on the improved properties of steel fibre reinforced con-

cretes. A short overview is given in the followings without aim-

ing to a comprehensive literature review regarding the most im-

portant properties of SFRC. Compressive strength and modulus

of elasticity is generally expected to be increased by the addition

of fibres only in the range of high fibre content, and the ultra high

performance needs the advances of concrete technology and the

use of supplementary cementitious materials as well [14]. If the

steel fibre content does not exceed 2 V%, the distribution of the

fibres is even and the concrete is well compacted then no no-

table increase in strength and modulus of elasticity is expected.

Increased toughness of steel fibre reinforced concretes is studied

in details in the technical literature [15–17].

Toughness of SFRC is described by the parameters defined

for and measured during the post-cracking phase of mechanical

tests. Apart from water-cement ratio and fibre content, the basic

parameters of fracture mechanics (e.g. fracture energy) and spe-

cial toughness parameters defined by load–deflection and load–

crack mouth opening displacement (CMOD) curves are used.

Fracture parameters and toughness indices closely correlate with

fibre content [18].

Ductility is also one important parameter of structural behav-

ior (especially in seismic design) that is reported to be consider-

ably increased by the use of SFRC members [19]. Energy dissi-

pation achieved by steel fibres due to crack arrest and multiple

cracking of the concrete matrix, as well as the pull-out of steel

fibres in plastic hinges at the cross sections of maximum inner
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forces considerably add to the pseudo-ductile/ductile behavior

of structural members.

Another issue is the fatigue strength of concrete that is also

considerably increased by the addition of steel fibres. Most im-

portant parameters in this sense are the fibre content, the bond

properties of the fibres and the aspect ratio of the fibres [20]. Ef-

ficiency of steel fibres in bond behavior depends mainly on fibre

geometry and orientation [21,22]. Steel fibres effectively reduce

the shrinkage deformation of concrete as well. It was reported

that application of 1 V% fibres decreases the shrinkage defor-

mations by almost 10% and produces almost twice reduction of

the crack width [23]. It has recently been remarked that SFRC

provides greater self-healing capacity with a reduction in water

permeability [24].

Design aspects, partial safety factors, constitutive laws and

cross sectional design for conventional SFRC and for high

strength SFRC are detailed in the literature. Besides ulti-

mate limit state resistance, steel fibre reinforcement can signif-

icantly improve structural behavior at serviceability limit state

[11, 25, 26]. Level of knowledge on design of SFRC has been

increased, and design rules have been optimized resulting more

economical solutions that may allow more effective use of HSC

together with steel fibres. With the application of steel fibre

reinforced self compacting concrete (SFRSCC) and fibre rein-

forced polymer (FRP) reinforcements and laminates, innova-

tive special sandwich panel applications have recently become

available both for building construction and pedestrian bridge

construction [27–29]. Fibre reinforced concretes and fibre re-

inforced polymers provide one of the most important research

trends nowadays in concrete construction. Still limited and con-

tradictory data are, however, available on durability, particularly

on de-icing salt scaling resistance of steel fibre reinforced con-

cretes. It is not clearly demonstrated how and which extent the

steel fibres can decelerate the de-icing salt scaling deterioration,

as the failure is started at the very surface that is usually richer

in cement paste and poorer in fibres. However, clear experi-

mental evidence demonstrates that steel fibres do have advanta-

geous influences on the scaling resistance under certain condi-

tions [30, 31].

Typical deterioration of the concrete infrastructure in cold cli-

mates is the de-icing salt scaling that usually results serious sur-

face damage during freeze-thaw cycles in the presence of salt-

water pools on horizontal surfaces of structural elements. The

damage is progressive and results the removal of small parts

(flakes) of the surface of concrete.

Resistance to freeze-thaw cycles and de-icing agents are

tested usually on surfaces of plain concrete specimens, and the

pressure due to forming of iron-oxides is, therefore, excluded

and scaling deterioration is explained with the cracking ten-

dency of the brine ice formed in the saltwater pool resulting in

glue spalling of the concrete surfaces [32, 33]. Short steel fibres

in concrete may, however, add to the salt scaling resistance by

the increased fracture toughness since the glue spalling crack

propagation during scaling is a result of the ratio of fracture

toughness of the ice film and that of the cementitious substrate

[34]. Technical literature evidently shows that steel fibres alone

cannot produce complete scaling resistance without the simulta-

neous application of air entraining agents [30, 31, 34]. It is also

demonstrated that different supplementary cementing materials

(fly ash, blast furnace slag, silica fume, metakaolin, calcined

clay and natural pozzolans) can give even adverse influences on

both the scaling phenomenon and the chloride binding capacity

[35–38]. Therefore, the effects of fibres and mineral additives

need separate analyses.

Understanding of the de-icing salt scaling behavior and scal-

ing resistance of steel fibre reinforced concretes should be

started at the composite material level of Ordinary Portland Ce-

ment (OPC) concretes. The possible influences of cast surfaces,

supplementary cementing materials and air-entraining agents –

use of the latter is, however, obligatory in case of freeze-thaw

exposure of structures – is to be excluded from an exploratory

study.

The present experiments, therefore, targeted to study the neat

behavioral aspects of scaling damage on SFRC by conven-

tional de-icing salt scaling test methods completed with a testing

method developed by the authors, resulting more severe damage

than the conventional methods.

2 Selection of materials for testing

For the durability studies of SFRC specimens Ordinary Port-

land Cement (OPC) of low C3A content was selected (CEM I

42.5) and concrete mixes intentionally did not contain air en-

training admixture. Main aim was to exclude the advantageous

influence of entrained air and to study the direct influence of

the steel fibres on the scaling performance. Crimped steel fibres

(30/0.5; manufacturer D&D, Hungary) were applied based on

their favorable properties demonstrated in earlier experiments.

Dosage of fibres was fit to amounts accepted in construction

practice (25, 50, 75 kg/m3). Two different concrete mixes were

studied: one with 300 kg/m3 cement, w/c = 0.54 water-cement

ratio and Vpaste = 259 l/m3 cement paste volume; the second mix

is with 400 kg/m3 cement, w/c = 0.42 water-cement ratio and

Vpaste = 297 l/m3 cement paste volume. Quartz sand and gravel

was used with maximum size of aggregate, MSA = 16 mm. Con-

sistency of the fresh concrete was designed to be 500± 20 mm

flow and was set by HRWR admixture in each case. Air content

was targeted to be 10 l/m3. Standard cube specimens were pre-

pared and a laboratory vibrating table was used for compaction.

Cubes were kept under water for 7 days. After 7 days the speci-

mens were stored at laboratory condition (i.e. 20± 3°C temper-

ature and 65± 5% relative humidity).

Main aims of the present studies are to reveal the influence, if

any, of the steel fibres on the de-icing salt scaling resistance and

to find the most appropriate material property that can charac-

terize the damage accumulation. Authors aim to perform a com-

prehensive analysis that utilizes many different testing methods
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that may add to the better understanding of the de-icing salt scal-

ing behavior of steel fibre reinforced concretes.

3 Results and evaluation

3.1 Mechanical and fracture properties

All important mechanical and fracture properties were as-

sessed before the durability tests. General trends of group av-

erage values are indicated in Fig. 1 to 4 for the body density,

the compressive strength, the flexural tensile strength and the

splitting tensile strength. It can be realized that the influence of

the steel fibres – as it was expected – is almost negligible on

the compressive strength and on the flexural tensile strength, for

the applied dosage of the steel fibres. Body density follows the

increase in the steel fibre content. Splitting tensile strength is

considerably increased by the steel fibres: 35% is the increase

for 75 kg/m3 steel fibre in the case of Mix 1 (w/c = 0.54) and

26% is the increase for 75 kg/m3 steel fibre in the case of Mix 2

(w/c = 0.42).

Fig. 1. Initial body density at the age of 28 days (before performing the dura-

bility tests)

Fig. 2. Initial compressive strength at the age of 28 days (before performing

the durability tests)

Fig. 3. Initial splitting tensile strength at the age of 28 days (before perform-

ing the durability tests)

Representative results of beam flexural tests are shown in

Fig. 5 in the form of bending stress vs. mid-span deflection

Fig. 4. Initial flexural tensile strength at the age of 28 days (before perform-

ing the durability tests)

responses (75×150 mm cross section beams were tested in four-

point bending over 600 mm clear span). It can be realized that

considerable post cracking toughness can be activated in the

case of Mix 2 (w/c = 0.42) at 75 kg/m3 steel fibre content. How-

ever, majority of the results follow the typical shape of the load-

deflection relationships found for steel fibre reinforced concretes

of low fibre content. Post cracking flexural toughness (J0.5−3.0)

has been calculated as the area under the bending stress vs.

mid-span deflection curve between the limits of δ0 = 0.5 mm and

δ1 = 3.0 mm. Numerical values of post cracking flexural tough-

ness (J0.5−3.0) are indicated in Fig. 6a. Superior behavior of Mix

2 (w/c = 0.42) with 75 kg/m3 steel fibre content is clearly visi-

ble.

a) Mix 1 (w/c = 0.54)

b) Mix 2 (w/c = 0.42)

Fig. 5. Bending stress vs. mid-span deflection responses of beams tested in

four-point bending
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a) Post cracking flexural toughness (J0.5−3.0 area under the bending stress

vs. mid-span deflection curves)

b) Fracture toughness (KIc critical stress intensity factor)

Fig. 6. Toughness parameters of the mixes

Beam flexural tests were also carried out on notched mem-

bers with CMOD instrumentation. Calculated values of the frac-

ture toughness (KIc critical stress intensity factor) are indicated

in Fig. 6b. The KIc critical stress intensity factor was calcu-

lated as KIc = 6Fl/4bh2(cY)1/2; where F – concentrated load,

l – span, b – depth of cross section, h – height of cross sec-

tion, c – notch length, Y – geometry parameter; which latter

was approximated with the following polynomial: Y = 1.93 –

3.07c/h + 14.53 (c/h)2 – 25.11(c/h)3 + 25.80(c/h)4 based on lit-

erature data. It can be realized that the fracture toughness is

strongly influenced by the amount of steel fibres, and the effect

of the strength of concrete is less pronounced.

3.2 Salt scaling tests

The suggestions of the CEN document CEN/TS 12390-

9:2006 [39] for slab test were followed in the salt scaling

tests. An alternative dimension of 150×150×50 mm was se-

lected since the slab test specimens were sawn from larger

beams. To avoid carbonation, the exposed surfaces were pre-

pared right before the slab tests. Freeze-thaw cycles were ap-

plied at five levels and the scaling loss was measured after 7, 14,

28, 42 and 56 cycles. The exposure solution of 3% NaCl was

refreshed after each level. All the specimens were tested up to

56 cycles. High scaling loss (g/m2) was realized (Fig. 7). Severe

scaling of more than 1000 g/m2 was observed for the majority

of the test slabs after 28 cycles.

The total scaling loss was determined first in the representa-

tion of the scaling loss that consisted the complete loss of mass

(concrete + steel fibres) from which the mass of steel fibres (re-

moved with a magnet) was subtracted and the final scaling loss

(g/m2) was resulted by adding the extra loss of mass for con-

crete (of which volume corresponded to the mass that is equal

Fig. 7. Salt scaling damage of slab specimen tested according to CEN/TS

12390-9:2006 [39]

to the mass of steel fibres removed). Results for the scaling loss

are indicated in Fig. 8. The diagrams show the group average

responses (each data point gives the average of two or three in-

dividual measurements) with two different scales of the vertical

axes: both a linear scale and a logarithm scale of the loss of

mass are indicated. Clear occurrence of the rapidly increasing

scaling damage after 28 cycles is realized along the linear scale

of the vertical axis for those mixes which are the most sensitive

to scaling (25 kg/m3 fibre content). Influence of the concrete

strength is almost negligible (that can be understood by the frac-

ture toughness values given in Fig. 6b being less sensitive to

strength and more sensitive to fibre content). It can be seen that

25 kg/m3 steel fibre content could not utilize almost any scaling

resistance.

The logarithm scale representation helps to confirm that the

most important driver of the scaling resistance is the fibre con-

tent: data points corresponding to each dosage (25, 50 and

75 kg/m3) show surprisingly similar trends, independently from

the concrete strength. A possible combined action of the in-

creasing interface area – consequently porosity due to the fi-

bre addition – and the parallel increasing internal restrain ac-

tion by the fibres can be visualized. During the first 7 freeze-

thaw cycles the lowest scaling was realized on the 25 kg/m3 fi-

bre content specimens and the highest scaling was realized on

the 75 kg/m3 fibre content specimens. With increasing the num-

ber of the freeze-thaw cycles, the scaling of the 25 kg/m3 fibre

content specimens is accelerated at extreme rate, while the scal-

ing of the 75 kg/m3 fibre content specimens is increased linearly

or even at a decreasing rate.

To see if percolated porosity accounts for these tendencies,

the atmospheric water absorption and the vacuum water absorp-

tion of the specimens were measured and evaluated. Calculated

values are given in Fig. 9 (apparent porosity is in V% and vac-

uum water absorption is in m%). It can be seen that the perco-

lated porosity follows the change of the steel fibre content only

in the case of the higher strength concrete (Mix 2; w/c = 0.42).

The percolated porosity of specimens from Mix 1 (w/c = 0.54)

is rather high and the influence of the additional interface area
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a) Linear scale of vertical axis (scaling loss)

b) Logarithm scale of vertical axis (scaling loss)

Fig. 8. Cumulative normalized scaling losses of slab specimens vs. number

of freeze-thaw cycles

appearing by the addition of the steel fibres is not utilized as

extra water permeable capillaries. It can be postulated that the

behavior observed in Fig. 8 is due to the increased volume of

the interface transition zone (ITZ) around the steel fibres that

is basically not a water permeable layer; however, its porosity

is higher than that of the cement gel [40, 41]. Technical litera-

ture explains that the most sensitive part of the hardened cement

paste from the point of view of salt scaling is the ITZ because

its fracture toughness is at least one order of magnitude smaller

than that of the concrete as a resultant [34]. Damage within the

ITZ is performed very fast during salt scaling as it is clearly

visible in Fig. 8. If there is no adequate internal restrain (i.e.

steel fibres) available in the concrete matrix then the scaling de-

terioration is accumulating very fast and the disintegration of the

concrete specimen occurs (see Fig. 7). If there is, however, more

than 50 kg/m3 steel fibres available in the concrete then the high

stiffness of the fibres is utilized and the scaling can be hindered.

Although, the experimental results presented here have evi-

dently demonstrated the advantages of the application of steel

fibres, it should be generally concluded that fibres alone could

not provide appropriate scaling resistance to the studied medium

strength concrete mixes.

a) Apparent porosity from atmospheric water absorption test

b) Vacuum water absorption

Fig. 9. Percolated porosity parameters of the mixes

3.3 Combined capillary suction/salt scaling/salt crystalliza-

tion tests

In a realistic salt scaling situation, concrete can be damaged

due to the crystallization pressure of NaCl (in case of satura-

tion and drying) additionally to the scaling damage caused by

the glue spalling mechanism. The damage can be present even

without any frost action. Capillary activity (capillary suction)

can also have an influence in particular cases. The effect of salt

solution is more emphasized if combined with wetting and dry-

ing rather than stored continuously in a salt solution pool. To

model a more severe damage, two test protocols have been de-

veloped for the present research, expecting more damage that is

realized by the standard slab tests.

Protocol A: Prismatic samples (75×75×150 mm) are im-

mersed up to half depth into NaCl solution of 3 m% concen-

tration, and rotated by 90 degrees after each 8th cycle during

the test of 32 freeze-thaw cycles. The protocol results more se-

vere damage than classic methods that are using completely im-

mersed specimens or slab specimens with a pool at their top. By

the protocol, all sides of the samples are exposed to the com-

bined action of freeze-thaw cycles and possible crystallization

of NaCl since the surfaces can become saturated and can dry out

and NaCl solution can be transported by capillary suction. Re-

sults (Fig. 10) supported the supposition that the developed test

method results severe damage.

Protocol B: the same as above, but without rotating the pris-

matic samples. The protocol B seems to be less severe than

protocol A.

Both protocols A and B resulted an accelerated deterioration

compared to the slab test of CEN/TS 12390-9:2006 [39].
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Fig. 10. Loss of mass after 32 freeze-thaw cycles by protocol A

3.4 Residual properties

Moduli of elasticity of the prismatic specimens were recorded

both before and after applying the most severe protocol A. Re-

sults are indicated in Fig. 11. Favorable influence of the steel

fibres is clearly demonstrated. All slab specimens after scal-

ing tests according to CEN/TS 12390-9:2006 [39] and prismatic

specimens after applying the protocol A were split for visual

inspection and pH measurements, and the splitting loads were

recorded to calculate the residual splitting tensile strengths. Av-

erage values corresponding to the prism specimens are indi-

cated in Fig. 12. Nevertheless severe surface deterioration of the

specimens was realized, considerable residual splitting tensile

strength remained (generally higher than 2 N/mm2). It indicates

that steel fibres located farer from the surface are still effective.

Results confirm how efficient can be the steel fibre addition on

the splitting tensile strength in even weaker concrete matrices.

Fig. 11. Moduli of elasticity before (condition NF) and after (condition F)

32 freeze-thaw cycles by protocol A

Resistance against water penetration was tested both on spec-

imens after freeze-thaw cycles and on specimens free of freeze-

thaw influence but stored under laboratory conditions for more

than 4 years. Tests were carried out according to EN 12390-

8:2009 [42] applying 5 bar water pressure for 72 hours. Results

of the tests for the specimens free of freeze-thaw influence are

indicated in Fig. 13. Results are satisfactory; one may refer to

Fig. 12. Splitting tensile strength of specimens after 32 freeze-thaw cycles

by protocol A (condition F)

DIN 1045-2 and DIN 1048-5 for the acceptable maximum wa-

ter penetration depth suggested to be hmax = 50 mm [43,44]. Re-

sults of the tests for the specimens after freeze-thaw cycles were

found in the same satisfactory range (not represented in the di-

agram). Some larger scatter of the measured water penetration

depths were realized (between 6 mm to 28 mm). It was demon-

strated that even high fibre content may result favorable resis-

tance against water pressure without any sign of compaction de-

fect.

Fig. 13. Water penetration depths of 4 years old NF condition specimens

recorded in watertightness tests according to EN 12390-8:2009 [42]

4 Discussion

Scaling and salt crystallization damage studies of SFRC as a

composite material need to exclude the evidential influences of

cast surfaces, air-entraining agents and supplementary cement-

ing materials. This view can be, on the one hand, disputed from

a practical point of view, but can be, on the other hand, toler-

able from a basic research point of view that targets the fun-

damental understanding of the effect of the fibres. Technical

literature emphasizes the importance of the paste rich cast sur-

faces of structural elements under realistic de-icing salt scaling

conditions and, however, reflects on the possible influence of the

macroscopic steel fibres on the scaling damage as well [30]. It is

also discussed that the first freeze-thaw cycles may incorporate

rapid deterioration of a thin layer at the surface [30]. Techni-

cal literature demonstrates that the addition of steel fibres may

produce even reduction of the scaling resistance of air-entrained

concrete by the disadvantageous increase of the spacing factor

and making the air-voids in concrete become coarser [31].

Misleading results of such influences that may hide the neat

effect of the fibres are successfully eliminated in the present ex-

periments. Further, the importance of the increased volume of
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the interface transition zone (ITZ) around the steel fibres is high-

lighted for the first freeze-thaw cycles and the importance of the

internal restrain activated by the steel fibres during later freeze-

thaw cycles. Damage within the ITZ is performed very fast

during salt scaling as it was demonstrated experimentally (see

Fig. 8). If there is no adequate internal restrain available in the

concrete matrix, then the scaling deterioration is accumulating

rapidly, and the disintegration of the concrete specimen occurs.

If there is, however, more than 50 kg/m3 steel fibres available

in the concrete, then the high stiffness of the steel fibres can

be utilized and the scaling can be hindered. Superior perfor-

mance of the crimped steel fibres used in the present studies has

been demonstrated. Residual modulus of elasticity or residual

splitting tensile strength measurements can be one appropriate

measure in this sense.

5 Conclusions

De-icing salt scaling studies were performed on SFRC spec-

imens made by Ordinary Portland Cement (OPC) of low C3A

content of concrete mixes that intentionally did not contain air

entraining admixture. Neat behavioral aspects of damage ki-

netics of SFRC were studied by salt scaling tests according to

CEN/TS 12390-9:2006 slab test, and by a combined capillary

suction/salt scaling/salt crystallization tests developed by the au-

thors. Test configuration made possible to reveal the importance

of the increased volume of the interface transition zone (ITZ)

around the steel fibres in the first freeze-thaw cycles and the

importance of the internal restrain activated by the steel fibres

during later freeze-thaw cycles. Damage within the ITZ was

realized to be rapid during salt scaling. If there is no adequate

internal restrain (i.e. steel fibres) available in the concrete matrix

then the scaling deterioration is accumulating very fast and the

disintegration of the concrete occurs. If there is, however, more

than 50 kg/m3 steel fibres available in the concrete then the high

stiffness of the fibres is utilized and the scaling can be hindered.

It can be demonstrated that the application of steel fibres fibres

alone could not provide scaling resistance to the studied medium

strength concrete mixes, but the increased fibre content consid-

erably adds to the scaling resistance.
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