
Ŕ periodica polytechnica

Civil Engineering

58/2 (2014) 155–171

doi: 10.3311/PPci.7550

http://periodicapolytechnica.org/ci

Creative Commons Attribution

RESEARCH ARTICLE

An efficient hybrid particle swarm

strategy, ray optimizer, and harmony

search algorithm for optimal design of

truss structures

Ali Kaveh / Seyed Mohammad Javadi

Received 2013-12-12, accepted 2014-03-10

Abstract

In this paper a metaheuristic algorithm composed of particle

swarm, ray optimization, and harmony search (HRPSO) is pre-

sented for optimal design of truss structures. This algorithm is

based on the particle swarm ray origin making is used to update

the positions of the particles, and for enhancing the exploitation

of the algorithm the harmony search is utilized. Numerical re-

sults demonstrate the efficiency and robustness of the HRPSO

method compared to some standard metaheuristic algorithms.
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1 Introduction

Metaheuristic algorithms have become powerful tools for op-

timizing many problems in different fields of engineering. Ex-

amples of such algorithms are GA algorithm [1], Particle Swarm

Optimization algorithm [2, 3], Ant Colony Optimization algo-

rithm [4], Charged System Search [5] Ray Optimization [6] and

many other algorithms. Apart from these basic algorithms, re-

searchers are still striving to balance the exploration and ex-

ploitation abilities of the metaheuristic algorithms, Some exam-

ples of these are a hybrid PSO with the passive congregation

(PSOPC) [7], a hybrid PSO with ACO and HS utilized for con-

trolling the variable constraint (HPSACO) [8], a hybrid method

ANGEL, which combined ant colony optimization (ACO), ge-

netic algorithm (GA), and local search strategy (LS) [9, 10],

among others

Recently, structural optimization has become one of the most

popular fields of optimization science. Different algorithms

have been employed for structural optimization including Ge-

netic Algorithms [11], Ant Colony Optimization [12], Particle

Swarm Optimizer [13,14], Harmony Search [15], Big Bang–Big

Crunch [16] Structural optimization has been studied in three

major groups as: (a) Size optimization (b) Topology optimiza-

tion (c) Shape optimization.

In this paper, the mixed particle swarm ray optimization and

harmony search is applied to the size optimization of truss struc-

tures. In this algorithm, PSO acts as the main engine of the al-

gorithm, RO boost the movement vector of the particles and HS

enhances the local search for better exploitation.

2 A brief introduction to the PSO, HS and RO

2.1 Particle swarm optimization

Particle swarm optimization (PSO) is a simple and effective

algorithm for optimizing a wide range of functions. Conceptu-

ally, it seems to lie somewhere between genetic algorithm and

evolutionary programming [2] The PSO uses the real-number

randomness and the global communication among the swarm

particles. In this sense, it is also easier to implement as there is

no encoding or decoding of the parameters into binary strings

as in genetic algorithms [17]. On each iteration, the swarm is
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updated by the following equations [3, 18]:

Vk+1
i = ωVk

i + c1r1

(
Pk

i − Xk
i

)
+ c2r2

(
Pk

g − Xk
i

)
(1)

Xk+1
i = Xk

i + Vk+1
i (2)

where Pi is the best previous position of the ith particle and Pg

is the best position of the particles which ever found. ω is an

inertia weight to control the influence of the previous velocity,

c1 and c2 are two acceleration constants and r1 and r2 are two

random numbers uniformly distributed in the range of (0,1). The

flowchart of the PSO is shown in Fig. 1.

2.2 Harmony search

The Harmony search algorithm was conceptualized using the

musical process of searching for a perfect state of harmony. Mu-

sical performances seek to find pleasing harmony as determined

by an aesthetic standard, just as the optimization process seeks

to find a global solution as determined by an objective function.

The pitch of each musical instrument determines the aesthetic

quality [19].

Fig. 2 shows the optimization procedure of the HS algorithm,

which consists of the following steps [15]:

Step 1: Initialize the optimization problem and the algorithm

parameters such as specification of each decision variable, pos-

sible value range for each decision variable, harmony memory

size (HMS), harmony memory considering rate (HMCR), pitch

adjusting rate (PAR), harmony memory (HM) and termination

criterion.

Step 2: Improvise a new harmony from the HM. A new har-

mony vector is generated from the HM based on memory con-

siderations rate (HMCR), pitch adjustments and randomization

(PAR). The HMCR sets the rate of choosing one value from the

historic values stored in the HM, and (1−HMCR) sets the rate of

randomly choosing one value from the possible range of values.

While the HMCR varies between 0 and 1, the pitch adjusting

process is performed only after a value is chosen from the HM.

The value (1−PAR) sets the rate of doing nothing. If the pitch

adjustment decision for xi is yes then

x′i ← x′i + bw.u(−1, 1)

where bw is an arbitrary distance bandwidth for the contin-

uous design variable and u(−1, 1) is a uniform distribution be-

tween −1 and 1 The HMCR and PAR parameters introduced in

the harmony search help the algorithm to find globally and lo-

cally improved solutions, respectively [19].

Step 3: Update the HM. In Step 4, if the New Harmony is

better than the worst harmony in the HM, the New Harmony is

included in the HM and the existing worst harmony is excluded

from the HM. The HM is then sorted by the value of the objec-

tive function.

Step 4: Repeat Steps 2 and 3 until the termination criterion is

satisfied. The computations are terminated when the termination

criterion is satisfied. Otherwise, steps 2 and 3 are repeated.

2.3 Ray optimization

Ray optimization (RO) is recently developed by Kaveh and

Khayatazad [6] This method is inspired by the transition of ray

from one medium to another from physics and uses the Snell’s

refraction law of the light. The transition of the ray is utilized

for finding the global or near-global solution.

Fig. 3. Incident and refracted rays and their specifications.

The pseudo-code of RO is presented in the following [20]:

Level 1: Scattering and evaluation

Step 1. Initialization. Initialize the parameter of the RO. Ini-

tialize an array of agents with random positions. According to

the number and type of groups that belong to the agent positions,

make an arbitrary array of the velocity vector. Each of these two

or three variable velocity vectors should be a normalized vector.

Step 2. Evaluation. For each agent evaluate the value of the

goal function in the current position. Save the position of the

best agent as the global best. Save the position of each agent as

its local best.

Level 2: Movement vector and motion refinement

Step 1. Movement vector. Add the solution vectors with the

corresponding movement vector.

Step 2. Motion refinement. If any agent violates a variable

boundary, refine its movement vector. After motion refinement

and evaluation of the goal function, again the so-far best agent

at this stage is selected as the global best, and for each agent, the

so-far best position by this stage (belonging to itself) is selected

as its local best.

Level 3: Origin making and converging

Step 1. Origin making. Find the origin of the each agent.

Step 2. Converging. Calculate the new movement vector for

each agent.

Level 4: Finish or redoing. Repeat the optimization process

until a terminating criteria is satisfied.

3 Mixed particle swarm, ray optimization, and harmony

search algorithm

Compared to other algorithms, PSO has a versatility to be

hybridized with other metaheuristics and simple to implement.

However, standard PSO has some infirmity, Shi and Eberhart

[18] introduced a parameter known as the inertia weight into
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Fig. 1. Flowchart of the PSO.

Fig. 2. Flowchart of the HS.
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the original particle swarm optimizer, to decrease the computa-

tional time and improve ability in finding the global optimum.

However, there is no information sharing among individuals ex-

cept that global best broadcasts the information to the other in-

dividuals. Therefore, the population may lose diversity and is

more likely to confine the search around local minima if com-

mitted too early in the search to the global best found so far He

et al. [7] introduced a new PSO with the passive congregation

(PSOPC), by introducing the passive congregation, information

can be transferred among individuals that will help individuals

to avoid misjudging information and becoming trapped by poor

local minima. Therefore in the PSOPC there are parameters

such as c1, c2 and c3 with each of them having an important

role on the performance of the algorithm.

On the other hand Ray optimization algorithm has an origin

making part which has an important role in this algorithm. In

the RO first the point to which each particle moves must be de-

termined. This point is named origin and it is specified by:

Ok
i =

(ite + k).GB + (ite − k).LBi

2.ite
(3)

Where Ok
i

is the origin of the ith agent or particle for the kth

iteration, ite is the total number of iterations of the optimization

process, GB and LBi are the global best and local best of the ith

agent, respectively [6]. In HRPSO ray origin making is used to

update the positions of the particles by the following equations:

Vk+1
i = ωVk

i + rand.Ok
i (4)

Thus in this algorithm. Parameters such as c1, c2 and c3in stan-

dard PSO and PSO with the passive congregation (PSOPC) sub-

stitute with origin making relation which is independent from

parameter tuning. In this equation the inertia weight considered

as a decreasing function of time which gradually decrease from

1 by each iteration and rand is a random number between 0 and

1.

On the other hand for enhancing the exploitation, the HS in-

troduces a parameter named pitch adjustment which helps the

algorithm find locally improved solutions [19] so the PAR used

to reinforce the HRPSO for better local search.

By these techniques, there is no dependency on the parame-

ters like as c1, c2 and c3 in the PSO and PSOPC. The flow chart

of the HRPSO is shown in Fig. 4.

4 STRUCTURAL OPTIMIZATION PROBLEM

The mathematical formulation of this optimization problem

can be expressed as:

minimizeW({X}) =

n∑
i=1

γiAiLi(x)

subject to : δmin ≤ δi ≤ δmax, i = 1, 2, ...,m

σmin ≤ σi ≤ σmax, i = 1, 2, ..., n

σb
i ≤ σi ≤ 0, i = 1, 2, ..., ns

Amin ≤ Ai ≤ Amax, i = 1, 2, ..., ng

Where W({X}) is the weight of the structure; m is the number of

nodes; n is the number of members making up the structure; ns

is the number of compression elements; ng is the number groups

(number of design variables); γi is the material density of mem-

ber i; Li is the length of member i; Ai is the cross-sectional area

of member i chosen between Amin and Amax; min is the lower

bound and max is the upper bound; σi and δi are the stress

and nodal deflection, respectively; σb
i

is the allowable buckling

stress in member i when it is in compression.

The penalty approach is used for constraint handling, i.e., if

the constraints are not violated, the penalty will be zero; oth-

erwise, the value of the penalty is calculated by dividing the

violation of the allowable limit to the limit itself.

5 DESIGN EXAMPLES

In this section, four truss structures are optimized utilizing

the present algorithm. These optimization examples consist of

a 25 bar space truss subjected to two load conditions, a 72 bar

space truss subjected to two load conditions, a 120 bar dome

space truss subjected to a single load condition and a 200 bar

planar truss subjected to three load conditions.

In the proposed algorithm, the maximum number of iterations

is set equal to 400, a population of 40 particles is used for the

first example, a population of 60 particles is utilized for the sec-

ond example and a population of 90 particles is employed for

two last examples. The maximum velocity is set as the differ-

ence between the upper and lower bounds, which guarantees

that the particles rationally survey the search space and pitch

adjusting rate (PAR) consider as 0.2. These truss structures are

analyzed using the finite element method (FEM).

5.1 A 25-bar space truss

The topology and nodal numbers of a 25-bar spatial truss

structure are shown in Fig. 5. This structure has been

size optimized by many researchers and the results are com-

pared. In these studies, the material density was 0.1 lb/in3

(2767.990 kg/m3) and modulus of elasticity was 10,000 ksi

(68950 MPa), Twenty five members are categorized into eight

groups, as shown in Tab. 1. Designs for a multiple load case are

performed as shown in Tab. 2. The truss members are subjected

to the compressive and tensile stress limitations shown in Tab. 3.

In addition, maximum displacement limitations of ± 0.35 in

(8.89 mm) are imposed on every node in every direction. The
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Fig. 4. Flowchart of the HRPSO.

Fig. 5. A 25-bar spatial truss.

Tab. 1. Element information for the 25-bar spatial truss.

Element group number

1 2 3 4 5 6 7 8

1;(1,2) 2:(1,4) 6:(2,4) 10:(6,3) 12:(3,4) 14:(3,10) 18:(4,7) 22:(10,6)

3:(2,3) 7:(2,5) 11:(5,4) 13:(6,5) 15:(6,7) 19:(3,8) 23:(3,7)

4:(1,5) 8:(1,3) 16:(4,9) 20:(5,10) 24:(4,8)

5:(2,6) 9:(1,6) 17:(5,8) 21:(6,9) 25:(5,9)
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Tab. 2. Loading conditions for the 25-bar spatial truss.

Node Case1 Case2

PX PY PZ PX PY PZ

kips (kN) kips(kN) kips (kN) kips (kN) kips (kN)

1 0.0 20.0 (89)
-5.0

(22.25)
1.0 (4.45) 10 (44.5)

-5.0

(22.25)

2 0.0 -20.0 (89)
-5.0

(22.25)
0.0 10 (44.5)

-5.0

(22.25)

3 0.0 0.0 0.0 0.5 (2.22) 0.0 0.0

6 0.0 0.0 0.0 0.5 (2.22) 0.0 0.0

Tab. 3. Member stress limitation for the 25-bar spatial truss.

Element group
Compressive stress

limitations ksi (MPA)

Tensile stress limitations

Ksi

1 A1 35.092 (241.96) 40.0 (275.80)

2 A2~A5 11.590 (79.913) 40.0 (275.80)

3 A6~A9 17.305 (119.31) 40.0 (275.80)

4 A10~A11 35.092 (241.96) 40.0 (275.80)

5 A12~A13 35.092 (241.96) 40.0 (275.80)

6 A14~A17 6.759 (46.603) 40.0 (275.80)

7 A18~A21 6.959 (47.982) 40.0 (275.80)

8 A22~A25 11.082 (76.410) 40.0 (275.80)

minimum and maximum cross-sectional area of all members

is 0.01 in2 (0.06452 cm2) and 3.4 in2 (21.94 cm2) respectively

A comparison to other references with respect to the cross-

sectional area of each group and the final weight reached for the

25 bar space truss is shown in the Tab. 4. Fig. 6 and Fig. 7 com-

pare the allowable existing stress and displacement constraint

values of the HRPSO resulted for two different loading condi-

tions. The comparison of the results of HRPSO with those of

the HS and PSO is shown in Fig. 8.

5.2 A 72-bar spatial truss

A 72-bar spatial truss shown in Fig. 9. Tab. 5 lists the val-

ues and directions of the two load cases applied to the 72 bar

spatial truss. It has been size optimized by many researchers

[12, 14–16, 20, 23, 24]. In these studies, the material density

and modulus of elasticity were 0.1 lb/in3 (2767.990 kg/m3) and

10,000 ksi (68950 MPa), respectively. The members were sub-

jected to the stress limits of ± 25 ksi (± 172.375 MPa) and the

uppermost nodes were subjected to the displacement limits of

± 0.25 in (± 0.635 cm) in both x and y direction. In this exam-

ple, two cases are considered:

Case 1: in which the minimum cross-sectional area of all

members is 0.1 in2 (0.6452 cm2) and Case 2: in which the mini-

mum cross-sectional area of 0.01 in2 (0.0645 cm2) is considered.

Tab. 6 shows the results for Case 1 and compares these results

with those previously reported in the literature. In Case 1, the

best weight of the HRPSO algorithm is 379.688 lb (1689 N). It

gets the optimal solution after 153 iterations and 9180 function

evaluations. The standard deviation of the HRPSO is 0.88 lb

(3.91 N) which is better than those of the ACO, BB–BC and RO,

being 3.66, 1.912 and 1.22 respectively. Tab. 7 shows the re-

sults for Case 2, In this case, HRPSO finds the best result while

other algorithms could not reach an optimum design. Compari-

son between the allowable and existing stress and displacement

constraint values of the HRPSO for Case 2 is shown in Fig. 10

and Fig. 11, it can be deduced that the second load condition is

dominant. The convergence history for this example is shown in

Fig. 12

5.3 A 120-bar dome truss

The topology and group members of a 120-bar dome truss are

shown in Fig. 13 This structure was first analyzed by Soh and

Yang [25] to obtain the optimal sizing and configuration vari-

ables and then it was studied by Lee and Geem [15], Kaveh

and Talatahari [8, 16] and Kaveh and Khayatazad [20]. In the

example considered in these studies the size variables are con-

sidered to minimize the structural weight, so in this paper for

better judgment the size optimizing is performed. The modulus

of elasticity is 30,450 ksi (210000 MPa) and the material den-

sity is 0.288 lb/in3 (7971.810 kg/m3). The yield stress of steel

is taken as 58.0 ksi (400 MPa). The dome is considered to be

subjected to vertical loading at all the unsupported joints, these

loads are taken as -13.49 kips (-60 kN) at node 1, -6.744 kips (-

30 kN) at nodes 2 through 14, and -2.248 kips (-10 kN) at the rest

of the nodes. The minimum cross-sectional area of all members

is 0.775 in2. (2 cm2) The constraints are considered as:

(1) Stress constraints (according to the AISC ASD

(1989))[26]  σ+
i

= 0.6Fy f or σi ≥ 0

σ−
i

f or σi < 0
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Fig. 6. Comparison of the allowable and existing stresses in the elements of the 25-bar space truss using HRPSO.

Fig. 7. Comparison of the allowable and existing displacements for the nodes of the 25-bar space truss using HRPSO.

Fig. 8. Comparison of the convergence rates between the three algorithms for the 25-bar space truss structure.

Tab. 4. Optimal design comparison for the 25-bar space truss.

Element group Optimal cross-sectional areas (in2)

Rizzi

[21]

Camp

and

Bi-

chon

[12]

Lee

and

Geem

[15]

Li et al. [22]

Kaveh

and

Ta-

lata-

hari

[8]

Camp

[23]

Kaveh

and

Ta-

lata-

hari

[16]

Present work

ACO HS PSO
PSO

PC
HPSO

HPSA

CO

BB-

BC

HBB-

BC
in2 cm2

1 A1 0.010 0.010 0.047 9.863 0.010 0.010 0.010 0.010 0.010 0.010 0.0645

2 A2~A5 1.988 2.000 2.022 1.798 1.979 1.970 2.054 2.092 1.993 1.969 12.7032

3 A6~A9 2.991 2.966 2.950 3.654 3.011 3.016 3.008 2.964 3.056 3.016 19.4580

4 A10~A11 0.010 0.010 0.010 0.100 0.100 0.010 0.010 0.010 0.010 0.010 0.0645

5 A12~A13 0.010 0.012 0.014 0.100 0.100 0.010 0.010 0.010 0.010 0.010 0.0645

6 A14~A17 0.684 0.689 0.668 0.596 0.657 0.694 0.679 0.689 0.665 0.681 4.3935

7 A18~A21 1.677 1.679 1.657 1.659 1.678 1.681 1.611 1.601 1.642 1.681 10.8451

8 A22~A25 2.663 2.668 2.663 2.612 2.693 2.643 2.678 2.686 2.679 2.657 17.1419

Weight(lb) 545.16 545.53 544.38 627.08 545.27 545.19 544.99 545.38 545.16 544.99 2424.2 N
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Fig. 9. A 72-bar spatial truss.

Tab. 5. Loading conditions for the 72-bar spatial truss.

Node Case 1 Case 2

PX PY PZ PX PY PZ

kips (kN) kips (kN) kips (kN) kips (kN) Kips (kN) kips (kN)

17 5.0 (22.25) 5.0 (22.25)
-5.0

(22.25)
0. 0.

-5.0

(22.25)

18 0.0 0.0 0.0 0.0 0.0
-5.0

(22.25)

19 0.0 0.0 0.0 0.0 0.0
-5.0

(22.25)

20 0.0 0.0 0.0 0.0 0.0
-5.0

(22.25)

Fig. 10. Comparison of the allowable and existing stresses in the elements of the 72-bar space truss using HRPSO (Case 2).
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Tab. 6. Optimal design comparison for the 72-bar space truss (Case 1).

Element group Optimal cross-sectional areas (in2)

Khan and
Camp

and

Lee

and

Perez

and
Camp

Kaveh

and

Kaveh

and
Present

Willmert [24]
Bichon

[12]

Geem

[15]

Behdinan

[14]
[23]

Talata-

hari

[16]

Khayata-

zad

[20]

work

ACO HS PSO
BB-

BC

HBB-

BC
RO in2 cm2

η= 0.1 η= 0.15

1 A1~A4 1.793 1.859 1.948 1.790 1.7427 1.8577 1.9042 1.836490 1.83100 11.8129

2 A5~A12 0.522 0.526 0.508 0.521 0.5185 0.5059 0.5162 0.502096 0.50954 3.2873

3 A13~A16 0.100 0.100 0.101 0.100 0.1000 0.1000 0.1000 0.100007 0.10000 0.6452

4 A17~A18 0.100 0.100 0.102 0.100 0.1000 0.1000 0.1000 0.100390 0.10000 0.6452

5 A19~A22 1.208 1.253 1.303 1.229 1.3079 1.2476 1.2582 1.252233 1.26539 8.1638

6 A23~A30 0.521 0.524 0.511 0.522 0.5193 0.5269 0.5035 0.503347 0.50610 3.2652

7 A31~A34 0.100 0.100 0.101 0.100 0.1000 0.1000 0.1000 0.100176 0.10000 0.6452

8 A35~A36 0.100 0.100 0.100 0.100 0.1000 0.1012 0.1000 0.100151 0.10000 0.6452

9 A37~A40 0.623 0.581 0.561 0.517 0.5142 0.5209 0.5178 0.572989 0.51550 3.3258

10 A41~A48 0.523 0.527 0.492 0.504 0.5464 0.5172 0.5214 0.549872 0.53250 3.4355

11 A49~A52 0.100 0.100 0.100 0.100 0.1000 0.1004 0.1000 0.100445 0.10000 0.6452

12 A53~A54 0.196 0.158 0.107 0.101 0.1095 0.1005 0.1007 0.100102 0.10019 0.6464

13 A55~A58 0.149 0.152 0.156 0.156 0.1615 0.1565 0.1566 0.157583 0.15611 1.0072

14 A59~A66 0.570 0.561 0.550 0.547 0.5092 0.5507 0.5421 0.522220 0.55790 3.5993

15 A67~A70 0.443 0.438 0.390 0.442 0.4967 0.3922 0.4132 0.435582 0.41360 2.6684

16 A71~A72 0.519 0.532 0.592 0.590 0.5619 0.5922 0.5756 0.597158 0.55304 3.5680

Weight (lb) 381.72 387.67 380.24 379.27 381.91 379.85 379.66 380.458 379.688 1689 N

Tab. 7. Optimal design comparison for the 72-bar space truss (Case 2).

Element group Optimal cross-sectional areas (in2)

Lee and Geem [15] Present work

HS in2 cm2

1 A1~A4 1.963 1.88900 12.1871

2 A5~A12 0.481 0.53020 3.4206

3 A13~A16 0.010 0.01000 0.0645

4 A17~A18 0.011 0.01000 0.0645

5 A19~A22 1.233 1.31480 8.4826

6 A23~A30 0.506 0.50929 3.2857

7 A31~A34 0.011 0.01000 0.0645

8 A35~A36 0.012 0.01000 0.0645

9 A37~A40 0.538 0.52950 3.4161

10 A41~A48 0.533 0.52634 3.3957

11 A49~A52 0.010 0.01000 0.0645

12 A53~A54 0.167 0.08941 0.5768

13 A55~A58 0.161 0.16927 1.0921

14 A59~A66 0.542 0.52700 3.4000

15 A67~A70 0.478 0.42545 2.7448

16 A71~A72 0.551 0.59162 3.8169

Weight (lb) 364.33 363.943 1618.9 N

Fig. 11. Comparison of the allowable and existing displacements for the nodes of the 72-bar space truss using HRPSO (Case 2).
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Fig. 12. Convergence rate for the 72-bar spatial truss structure using HRPSO (Case 2).

Where σ−
i

is calculated according to the slenderness ratio:

σ−i =


[(

1 −
λ2

i

2C2
C

)
Fy

]
/
(

5
3

+ 3λi

8CC
−

λ3
i

8C3
C

)
f orλi < CC

12π2E

23λ2
i

f orλi ≥ CC

Where E = the modulus of elasticity; Fy = the yield stress of

steel; Cc = the slenderness ratio (λi) dividing the elastic and in-

elastic buckling regions
(
CC =

√
2π2E/Fy

)
; λi the slenderness

ratio (λi = kLi/ri); k = the effective length factor; Li = the mem-

ber length; and ri = the radius of gyration. On the other hand,

the radius of gyration (ri) can be expressed in terms of cross-

sectional areas, i.e., ri = aAb
i

[27] , Here, a and b are the con-

stants depending on the types of sections adopted for the mem-

bers such as pipes, angles, and tees. In this example, pipe sec-

tions (a = 0.4993 and b = 0.6777) were adopted for bars and four

cases of constraints were considered:

Case 1: with stress constraints and no displacement con-

straints

Case 2: stress constraints and displacement limitations of

± 0.1969 in (± 5 mm) are imposed on all nodes in x- and y-

directions.

Case 3: no stress constraints but displacement limitations of

± 0.1969 in (± 5 mm) imposed on all nodes in z-directions.

Case 4: all constraints explained above

Tab. 8 gives the best solution and the corresponding weights

for all cases. HRPSO needs nearly 16000 function evaluations

to reach a solution which is less than 35,000 and 19850 for HS

[15] and RO [20] respectively. Fig. 14 to Fig. 19 compare the

allowable and existing stress and displacement constraint values

of the HRPSO resulted in four cases. By analyzing these charts,

it can be inferred that in Case 1, the stress constraints of some

elements in the 2nd, 4th and 7th groups are active. In Case 2,

the stress constraints of some elements in the 2nd, 4th and 7th

groups and the displacement of node 26 in y direction are ac-

tive. The maximum value for displacement in the x direction

is 0.1835 in (0.4661 cm) and the maximum displacement in the

y direction is 0.1967 in (0.4996 cm). The active constraints for

Case 3 are the displacements of the node 6 and node 10 in z di-

rections which is 0.1969 in (0.5001 cm). In Case 4, the stresses

in the elements of the 7th group and the displacements of the

2nd to 13th nodes in z directions affect the results.
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Fig. 13. A 120-bar dome truss.

Tab. 8. Optimal design comparison for the 120-bar dome truss (Case 1).

Element group Optimal cross-sectional areas (in2)

Lee and

Geem

[15]

Kaveh

and Ta-

latahari

[8]

Kaveh

and

Khay-

atazad

[20]

Present work

HS PSO PSOPC HPSACO RO in2 cm2

1 A1 3.295 3.147 3.235 3.311 3.128 3.1215 20.138

2 A2 2.396 6.376 3.370 3.438 3.357 3.3547 21.643

3 A3 3.874 5.957 4.116 4.147 4.114 4.1136 26.539

4 A4 2.571 4.806 2.784 2.831 2.783 2.7808 17.941

5 A5 1.150 0.775 0.777 0.775 0.775 0.7750 5.000

6 A6 3.331 13.798 3.343 3.474 3.302 3.3014 21.299

7 A7 2.784 2.452 2.454 2.551 2.453 2.4448 15.773

Weight (lb) 19707.77 32432.9 19618.7 19491.3 19476.193 19451.59 86525 N

Fig. 14. Comparison of the allowable and existing stresses in the elements of the 120-bar dome truss using HRPSO (Case 1).
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Tab. 9. Optimal design comparison for the 120-bar dome truss (Case 2).

Element group Optimal cross-sectional areas (in2)

Lee and

Geem

[15]

Kaveh

and Ta-

latahari

[8]

Kaveh

and

Khay-

atazad

[20]

Present work

HS PSO PSOPC HPSACO RO in2 cm2

1 A1 3.296 15.97 3.083 3.779 3.084 3.0811 19.878

2 A2 2.789 9.599 3.639 3.377 3.360 3.3525 21.629

3 A3 3.872 7.467 4.095 4.125 4.093 4.0964 26.428

4 A4 2.570 2.790 2.765 2.734 2.762 2.7616 17.817

5 A5 1.149 4.324 1.776 1.609 1.593 1.5943 10.286

6 A6 3.331 3.294 3.779 3.533 3.294 3.2926 21.243

7 A7 2.781 2.479 2.438 2.539 2.434 2.4326 15.694

Weight (lb) 19893.34 41052.7 20681.7 20078.0 20071.9 20066.34 89259.5 N

Tab. 10. Optimal design comparison for the 120-bar dome truss (Case 3).

Element group Optimal cross-sectional areas (in2)

Keleşoğlu

and

Ülker

[28]

Kaveh

and Ta-

latahari

[8]

Kaveh

and

Khay-

atazad

[20]

Present work

PSO PSOPC HPSACO RO in2 cm2

1 A1 5.606 1.773 2.098 2.034 2.044 1.92122 12.395

2 A2 7.750 17.635 16.444 15.151 15.665 15.02707 96.949

3 A3 4.311 7.406 5.613 5.901 5.848 5.89393 38.025

4 A4 5.424 2.153 2.312 2.254 2.290 2.15754 13.920

5 A5 4.402 15.232 8.793 9.369 9.001 9.66101 62.329

6 A6 6.223 19.544 3.629 3.744 3.673 3.71555 23.971

7 A7 5.405 0.800 1.954 2.104 1.971 1.95459 12.610

Weight (lb) 38237.83 46893.5 31776.2 31670.0 31733.2 31693.04 140977.6 N

Tab. 11. Optimal design comparison for the 120-bar dome truss (Case 4).

Element group Optimal cross-sectional areas (in2)

Kaveh and

Talatahari

[8]

Kaveh and

Khay-

atazad

[20]

Present work

PSO PSOPC HPSACO RO in2 cm2

1 A1 12.802 3.040 3.095 3.030 3.0231 19.504

2 A2 11.765 13.149 14.405 14.806 15.5518 100.334

3 A3 5.654 5.646 5.020 5.440 4.9536 31.959

4 A4 6.333 3.143 3.352 3.124 3.0958 19.973

5 A5 6.963 8.759 8.631 8.021 8.2583 53.279

6 A6 6.492 3.758 3.432 3.614 3.3255 21.455

7 A7 4.988 2.502 2.499 2.487 2.4958 16.102

Weight (lb) 51986.2 33481.2 33248.9 33317.8 33281.12 148041.8 N
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Fig. 15. Comparison of the allowable and existing stresses in the elements of the 120-bar dome truss using HRPSO (Case 2).

Fig. 16. Comparison of the allowable and existing displacements for the 120-bar dome truss using HRPSO (Case 2).

Fig. 17. Comparison of the allowable and existing displacements for the 120-bar dome truss using HRPSO (Case 3).

Fig. 18. Comparison of the allowable and existing stresses in the elements of the 120-bar dome truss using HRPSO (Case 4).

Fig. 19. Comparison of the allowable and existing displacements for the 120-bar dome truss using HRPSO (Case 4).
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5.4 A 200-bar planar truss

Fig. 20 shows the 200-bar planar truss which all members are

made of steel: the material density and modulus of elasticity are

0.283 lb/in3 (7933.410 kg/m3) and 30,000 ksi (206000 MPa), re-

spectively. This truss is subjected to constraints only on stress

limitations of ±10 ksi (68.95 MPa). The minimum admissible

cross-sectional area is 0.1 in2. (0.6452 cm2) There are three

loading conditions: (1) 1.0 kip (4.45 kN) acting in the positive

x- direction at nodes 1, 6, 15, 20, 29, 43, 48, 57, 62, and 71; (2)

10 kips (44.5 kN) acting in the negative y-direction at nodes 1,

2, 3, 4, 5,6, 8, 10, 12, 14, 15,16, 17, 18, 19, 20, 22, 24,..., 71, 72,

73, 74 and 75; and (3) Conditions (1) and (2) acting together.

The 200 members of this truss are divided into 29 groups, as

shown in Tab. 12.

The HRPSO algorithm found the best weight as 25451.95 lb

after 34000 function evaluations. A comparison to other ref-

erences with respect to the cross-sectional area of each group

and the final weight reached for the Two-hundred bar planar

truss is shown in the Tab. 12. In some studies the allow-

able stresses have been considered as approximately 10.4 ksi

(46.26 kN), In this case the HRPSO algorithm found the best

weight as 24853.5 lb (110553.9 N) and the solution vector

was: (0.1058, 0.8925 , 0.178 , 0.1049, 1.879, 0.3052, 0.1006,

2.9898, 0.2781, 3.9236, 0.4434, 0.103, 5.2836, 0.1566, 6.1959,

0.572, 0.1005, 7.8522, 0.1197 ,8.6529 ,0.6757 ,0.1519, 10.3116,

0.3816, 11.284 ,0.9516, 7.0692, 10.7735 ,13.0702).

6 CONCLUDING REMARKS

In this paper the recently developed metaheuristic population-

based search “RO” is mixed with PSO and HS [29]. In HRPSO,

the PSO acts as the main engine of the algorithm, and origin

making in RO boosts the movement vector of the particles and

improve the exploration On the other hand, the HS is used as an

auxiliary tool for enhancing the local search and better exploita-

tion Beyond these exploration and exploitation features, HRPSO

decrease some parameters which are needed in PSO.

Four truss structures are considered to verify the efficiency

of the HRPSO algorithm. In comparison to other metaheuristic

algorithms, the HRPSO algorithm has better performance than

ACO, PSO and even better than HS and RO (in some cases).
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Fig. 20. A 200-bar planar truss.
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Tab. 12. Optimal design comparison for the 200-bar planar truss

Optimal cross-sectional areas (in2)

Group

Variables

members (Ai,

i = 1,...,200)

Lee and Geem

[16]
Present work

HS PSO in2 cm2

1 1,2,3,4 0.1253 0.1038 0.1463 0.9439

2 5,8,11,14,17 1.0157 1.0763 0.9440 6.0903

3 19,20,21,22,23,24 0.1069 0.1000 0.1000 0.6452

4
18,25,56,63,94,101,

132,139,170,177
0.1096 0.1556 0.1000 0.6452

5 26,29,32,35,38 1.9369 1.9468 1.9399 12.515

6

6,7,9,10,12,13,15,16,

27,28,30,31,33,34,36,

37

0.2686 0.2656 0.2965 1.9129

7 39,40,41,42 0.1042 0.1299 0.1000 0.6452

8 43,46,49,52,55 2.9731 3.0653 3.1050 20.032

9 57,58,59,60,61,62 0.1309 0.1221 0.1000 0.6452

10 64,67,70,73,76 4.1831 4.0538 4.1052 26.485

11

44,45,47,48,50,51,53,

54,65,66,68,69,71,72,

74,75

0.3967 0.3764 0.4030 2.6000

12 77,78,79,80 0.4416 0.1111 0.1926 1.2426

13 81,84,87,90,93 5.1873 4.7229 5.4285 35.022

14 95,96,97,98,99,100 0.1912 13.8382 0.1000 0.6452

15 102,105,108,111,114 6.241 5.7394 6.4280 41.470

16

82,83,85,86,88,89,91,

92,103,104,106,107,

109,110,112,113

0.6994 1.4790 0.5733 3.6987

17 115,116,117,118 0.1158 0.1022 0.1378 0.8890

18 119,122,125,128,131 7.7643 8.1039 7.9731 51.439

19

133,134,135,136,137,

138,140,143,146,149,

152

0.1000 0.1000 0.1000 0.6452

20 140,143,146,149,152 8.8279 9.2087 8.9727 57.888

21

120,121,123,124,126,

127,129,130,141,142,

144,145,147,148,150,

151

0.6986 1.0012 0.7073 4.5632

22 153,154,155,156 1.5563 0.1146 0.4200 2.7097 N

23 157,160,163,166,169 10.9806 10.8325 10.867 70.111

24
171,172,173,174,175,

176
0.1317 8.3898 0.1000 0.6452

25 178,181,184,187,190 12.1492 11.9764 11.867 76.561

26

158,159,161,162,164,

165,167,168,179,180,

182,183,185,186,188,

189

1.6373 3.7262 1.0338 6.6697

27 191,192,193,194 5.0032 2.3484 6.6839 43.121

28 195,197,198,200 9.3545 8.2921 10.809 69.736

29 196,199 15.0919 17.0625 13.837 89.270

Weight (lb) 25447.1 31162.1 25451.95 113215.9 N
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