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Abstract

In this paper the Magnetic Charged System Search algorithm

is applied to structural optimization. This algorithm uses the

Biot-Savar law of electromagnetism to incorporate magnetic

forces into the already existing Charged System Search algo-

rithm and thus can be considered as an extension of it. Each

search agent exerts magnetic forces on other agents based on

the variation of its objective function value during its last move-

ment. This additional force provides some additional infor-

mation and enhances the performance of the Charged System

Search. The efficiency of the Magnetic Charged System Search

is examined by application of this algorithm to four structural

optimization problems. The results are compared to those of

CSS and some of the methods available in the literature.
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1 Introduction

Optimization algorithms can be roughly divided into two

main groups consisting of mathematical programming tech-

niques and meta-heuristic methods. Many different mathemat-

ical programming techniques have been proposed and devel-

oped during the past decades. Linear programming, convex pro-

gramming, integer programming, quadratic programming, and

dynamic programming are some of these approaches that have

been utilized for optimization problems. These methods usually

provide accurate solutions; however, most of them need the gra-

dient information of the objective function, and are dependent

on the initial points.

In order to address these shortcomings meta-heuristic algo-

rithms are developed. These algorithms are meant to find some

sub-optimal solutions in an affordable time and are usually in-

spired from natural phenomena. Genetic Algorithms (GA) pro-

posed by Holland [1] and Goldberg [2] are inspired by Darwin’s

theory of biological evolutions. Particle Swarm Optimization

(PSO) proposed by Eberhart and Kennedy [3] simulates social

behavior of flocks of birds and schools of fishes. Ant Colony

Optimization (ACO) formulated by Dorigo [4] imitates foraging

behavior of some species of ants. Many other natural-inspired

algorithms such as Simulated Annealing (SA) proposed by Kirk-

patrick et al. [5], Harmony Search (HS) presented by Geem et

al. [6], Gravitational Search Algorithm (GSA) proposed by

Rashedi et al. [7], Big Bang-Big Crunch algorithm (BB-BC)

proposed by Erol and Eksin [8], and improved by Kaveh and

Talathari [9] have been proposed in recent years. Due to their

good performance and ease of implementation, these methods

have been widely applied to various problems in different fields

of science and engineering. Structural optimization is one of

the active branches of applications for optimization algorithms

[10–18]. One of the recently developed meta-heuristic algo-

rithms is the Charged System Search proposed by Kaveh and

Talatahari [19] that uses the Coulomb and Gauss laws of physics

and Newtonian laws of mechanics to guide some Charged Par-

ticles (CPs) to explore search space and locate the optimal solu-

tions. This algorithm is further improved by utilizing the gov-

erning laws of magnetic forces and is presented as Magnetic
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Charged System Search by Kaveh et al. [20]. In this algorithm

the movements of CPs are determined due to the total force

(Lorentz force) instead of using the electric forces merely as in

CSS.

In this paper, the MCSS algorithm is applied to some struc-

tural optimization problems. The remainder of the paper is or-

ganized as follows: in Section 2 a brief review of the MCSS al-

gorithm is presented. In Section 3, the formulation of the struc-

tural optimization is presented for truss and frame structures.

The MCSS algorithm is then applied to different optimization

problems in Section 4. Finally, some concluding remarks are

provided in Section 5.

2 Optimization Algorithm

Magnetic Charged System Search (MCSS) introduced by

Kaveh et al. [20] considers the optimization agents to be mov-

ing charged particles exerting a series of electric and magnetic

forces on each other. These forces which are determined and

controlled on the basis of the solutions’ qualities and rates of

progress attract the particles gradually to better positions of the

search space and lead to eventual convergence.

MCSS assumes the charged particles to be moving through

straight virtual wires, as shown in Fig. 1. These wires create

a magnetic field on the points surrounding them depending on

their radius (R), the electric current passing through them (I),

and the distance to the point (r). The other CPs moving in the

search space are influenced by these magnetic fields.

The steps of MCSS can be summarized as follows:

Step 1. Initialization

The initial positions of the CPs are randomly determined us-

ing a uniform source, and the initial velocities of the particles are

set to zero. A memory is used to save a number of best results.

This memory is called the Charged Memory (CM).

Step 2. Determination of electric and magnetic forces and the

corresponding movements.

• Electric Force Determination: Each charged particle imposes

electric forces on the other CPs according to the magnitude of

its charge. The charge of each CP is:

qi =
f it (i) − f itworst

f itbest − f itworst

(1)

where f it(i) is the objective function value of the ith CP, f itbest

and f itworst are the best and worst fitness values so far among

all CPs, respectively.

In addition to the electric charge, the magnitudes of the elec-

tric forces exerted on the CPs are dependent on the separation

distance that is,

ri j =

∣∣∣∣∣∣Xi − X j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣(Xi + X j

)
/2 − Xbest

∣∣∣∣∣∣∣∣ + ε
(2)

where Xi and X j are the positions of the ith and jth CPs, and

ri j is the separation distance of them. Xbest is the position of

the best current CP, and ε is a small positive number to prevent

singularity.

The probability of the ith CP being attracted by the jth CP is

expressed as:

pi j =

 1⇔
f it(i)− f itbest

f it( j)− f it(i)
> rand, or, f it ( j) > f it (i)

0⇔ else.
(3)

The electric resultant force FE, j, acting on the jth CP can be

calculated by superposing the electric forces exerted by dif-

ferent CPs using the following equation,

FE, j = q j

∑
i,i, j

 qi

R3
ri j · w1 +

qi

r2
i j

· w2

 · p ji ·
(
Xi − X j

)
, w1 = 1, w2 = 0⇔ ri j < R

w1 = 0, w2 = 1⇔ ri j ≥ R

j = 1, 2, ...,N

(4)

in which R is the radius of the particles usually taken as unity.

• Magnetic Force Determination: Each CP moves in a virtual

wire and produces a magnetic field around itself. The aver-

age electric current of the ith CP in its kth iteration can be

calculated as:

(
Iavg

)
ik

= sign
(
d fi,k

)
×

∣∣∣d fi,k
∣∣∣ − d fmin,k

d fmax,k − d fmin,k
(5)

d fi,k = f itk (i) − f itk−1 (i) (6)

where d fi,k is the variation of the objective function in the kth

movement (iteration). f itk (i) and f itk−1 (i) are the values of

the objective function of the ith CP at the start of the kth and

k − 1th iterations, respectively.

The value of the magnetic force FB, ji exerted on the jth CP

because of the magnetic field produced by the ith virtual wire

can be expressed as:

FB, ji = q j ·

(
Ii

R2
ri j · z1 +

Ii

ri j

· z2

)
· pm ji ·

(
Xi − X j

)
, z1 = 1, z2 = 0⇔ ri j < R

z1 = 0, z2 = 1⇔ ri j ≥ R

(7)

where qi is the charge of the ith CP, R is the radius of the vir-

tual wires, Ii is the average electric current in each wire, and

pm ji is the probability of the magnetic influence (attraction

or repulsion) of the ith wire on the jth CP. This term can be

computed by the following expression:

pm ji =

 1⇔ f it (i) > f it ( j)

0⇔ else
(8)

This expression indicates that only a good CP can affect a bad

CP by the magnetic force.
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Fig. 1. A schematic view of virtual wire (movement path of a CP), qk
i

is the charge of ith CP at the end of the kth iteration (Kaveh et al. [20]).

The resultant magnetic force due to the group of CPs is then

calculated as:

FB, j = q j ·
∑
i,i, j

(
Ii

R2
ri j · z1 +

Ii

ri j

· z2

)
· pm ji ·

(
Xi − X j

)
,


z1 = 1, z2 = 0⇔ ri j < R

z1 = 0, z2 = 1⇔ ri j ≥ R

j = 1, 2, ...,N

(9)

• Total Acting Force: the total acting force on the jth CP due to

the simultaneous effect of electric and magnetic forces is then

evaluated as: ∑
F j = FB, j + FE, j (10)

where Fj is the total force acting on the jth CP.

• Movement Calculation. Under the influence of the abovemen-

tioned forces, each CP moves to its new position:

X j,new = rand j 1 · ka ·
F j

m j

· ∆t2+

+ rand j 2 · kv · V j,old · ∆t + X j,old,

(11)

V j,new =
X j,new − X j,old

∆t
(12)

where rand j1 and rand j2 are two random numbers, which are

uniformly distributed in the range (0,1). ka is the acceleration

coefficient, kv is the velocity coefficient, and m j is the mass of

the particle which is considered to be equal to q j. The veloc-

ity coefficient controls the influence of the previous velocity

of the particles. In other words, this coefficient is related to the

exploration ability of the algorithm. The acceleration coeffi-

cient controls the effect of the acting force i.e. it influences the

exploitation tendency of the algorithm. In order to maintain

more exploration at the early iterations and more exploitation

at the final iterations the magnitudes of ka and kv are set as:

ka = 0.5(1 + iter/itermax), . . . kv = 0.5(1 − iter/itermax) (13)

where iter is the current iteration number, and itermax is the

maximum number of iterations. Therefore, the value for ka in-

creases as the optimization process proceeds, while the value

for kv decreases.

Step 3. Charged Memory (CM) Updating

At the end of each iteration the Charged Memory is updated

i.e. less good particles stored in previous iterations are discarded

and better newly found particles are stored.

Step 4. Checking the Termination Criteria

Steps 2 and 3 are repeated until one of the specified termina-

tion criteria is satisfied.

3 Problem formulation

3.1 Truss optimization problem

In a truss optimization problem the goal is to minimize the

weight of the structure while satisfying some constraints. These

constraints can be imposed on stresses in members, displace-

ments of nodes, natural frequencies and other response parame-

ters. Cross-sectional areas of the members are considered to be

the design variables which can be assumed to change either con-

tinuously or discretely. The optimization problem can be stated

mathematically as follows:

Find X = [x1, x2, x3, . . . , xn]

to minimize Mer (X) = f (X) × fpenalty (X)

Subject to:

σi min ≤ σi l ≤ σi max

δk min ≤ δk l ≤ δk max

ωm ≤ ω
∗
m for some natural frequencies m

ωn ≥ ω
∗
n for some natural frequencies n

i = 1, 2, . . . , nm; k = 1, 2, . . . , nn; l = 1, 2, . . . , lc;

(14)

where X is the vector containing the design variables; nm and

nn are the number of members and nodes of structure, respec-

tively; lc is the number of loading conditions; n is the num-

ber of variables which is chosen with respect to symmetry and

practice requirements; Mer (X) is the merit function; f (X) is
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the cost function, which is taken as the weight of the structure;

fpenalty (X) is the penalty function which is taken as zero when

all of the constraints are satisfied; dc is the number of displace-

ment constraints; σi is the stress of the ith member and σi min

and σi max are its lower and upper bounds, respectively; δ j is the

displacement of the jth degree of freedom and δk min and δk max

are the corresponding lower and upper limits, respectively; ωm

is the mth natural frequency of the structure and ω∗m is its upper

bound. ωn is the nth natural frequency of the structure and ω∗n is

its lower bound.

The constraints are handled using a penalty function ap-

proach. The penalty function can be defined as:

Fpenalty (A) = (1 + ε1 · v)ε2 , v =

q∑
i=1

vi (15)

where q is the number of constraints. If the ith constraint is

satisfied vi will be taken as zero, if not it will be taken as:

vi =

∣∣∣∣∣∣1 −
(

pi

p∗
i

)∣∣∣∣∣∣ (16)

where pi is the response of the structure and p∗
i

is its bound. The

parameters ε1 and ε2 are parameters to the exploration and the

exploitation rate of the search process.

3.2 Frame optimization problem

Optimal design of frame structures can be mathematically for-

mulated as:

Find X = [x1, x2, x3, . . . , xn]

to minimizes Mer (X) = f (X) × fpenalty (X)

subjected to:

vσi =

∣∣∣∣∣∣σi

σa
i

∣∣∣∣∣∣ − 1 ≥ 0 i = 1, 2, . . . , nm for stress constraints

v∆ =
∆

H
− R ≥ 0 for maximum lateral displacement

vd
j =

d j

h j

− R j ≥ 0 i = 1, 2, . . . , ns

for inter-story drift constraints

(17)

Here σI is stress in ith element; σa
i

is the allowable stress in ith

member; nm is the number of frame members in the structure;

∆ is the maximum lateral displacement; H is the height of the

structure; R is the maximum drift index; d j is the inter-story

drift; h j is the story height of the jth floor; ns is the total number

of stories; and R j is the inter-story drift index permitted by the

code of practice.

AISC 2001 [21] is used here for the design of frame struc-

tures. The maximum allowable inter-story drift index is taken as

1/300 and for the LRFD interaction formula (AISC 2001, Equa-

tion H1-1a, b), the constrains are defined as:

vI =
Pu

2ϕcPn

+

(
Mux

ϕbMnx

+
Muy

ϕbMny

)
− 1 ≥ 0

f or
Pu

ϕcPn

< 0.2

(18)

vI =
Pu

ϕcPn

+
8

9

(
Mux

ϕbMnx

+
Muy

ϕbMny

)
− 1 ≥ 0

f or
Pu

ϕcPn

≥ 0.2

(19)

where Pu is the required axial strength (tension or compression);

Pn is the nominal axial strength (tension or compression); ϕc

is the resistance factor (ϕc = 0.9 for tension and ϕc = 0.85 for

compression); Mux and Muy are the required flexural strengths in

the x and y directions, respectively; Mnx and Mny are the nominal

flexural strengths in the x and y directions (for two-dimensional

structures, Mny = 0); and ϕb is the flexural resistance reduction

factor (ϕb = 0.9).

The same penalty function as used in truss optimization can

be used here.

4 Numerical Examples

Four numerical examples consisting of both frames and

trusses with different performance constraints are considered

here:

• A ten-bar truss with frequency constraints

• A 72-bar spatial truss with stress and displacement constraints

• A one-bay eight-story frame with lateral drift constraint

• A three-bay 24-story frame with LRFD specification and

inter-story drift constraints

A population of 25 CPs is considered for the first three exam-

ples and 50 CPs are used for the last one. Maximum number of

iterations is considered as the termination criterion. The opti-

mal results obtained from the proposed algorithm are compared

to some of the previously reported results. These comparisons

indicate the viability of the algorithm in solving different types

of structural optimization problems.

In order to calculate the effective length factors which are

needed in example 4 the following approximate formula based

on Dumonteil [22] is used:

K =

√
1.6 GAGB + 4 (GA + GB) + 7.5

GA + GB + 7.5
(20)

where GA and GB refer to the stiffness ratio or the relative

stiffness of a column at its two ends.

Example 1: A ten-bar truss

Frequency constraint size optimization of a 10-bar planar

truss as shown in Fig. 2 is considered as the first example.
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This example is viewed as one of the most well-known bench-

mark problems in frequency constraint structural optimization.

Each member’s cross-sectional area is regarded as an indepen-

dent continuous variable. A non-structural mass of 454.0 kg is

attached to the free nodes. Table 1 shows the material prop-

erties, variable bounds, and frequency constraints for this ex-

ample. This problem has been investigated by Grandhi and

Venkayya [23] using the optimality algorithm. Sedaghati, et al.

[24] have solved it by sequential quadratic programming and

the finite element force method. Wang et al. [25] have used

an evolutionary node shift method and Lingyun et al. [26] have

used a niche hybrid genetic algorithm to optimize this structure.

Gomes [27] has analyzed this problem using the particle swarm

algorithm. Kaveh and Zolghadr have investigated the problem

using the standard and an enhanced CSS [28] and a hybridized

CSS-BBBC algorithm with trap recognition capability [29].

Fig. 2. A ten-bar planar truss with masses shown in bigger solid circles

Fig. 3. Convergence curve of the best run for the 10-bar planar truss

Table 2 shows the optimal solutions found by different al-

gorithms. It should be noted that a modulus of elasticity of

E = 6.98 ×1010 Pa is used in Gomes [27] and Kaveh and Zol-

ghadr [23, 24]. This will generally result in relatively lighter

structures. Considering this, it appears that the proposed al-

gorithm has obtained one of the best solutions so far. Us-

ing E = 6.98 ×1010 Pa the proposd algorithm finds a structure

weighted 529.11 kg, which is lighter than that of CSS and en-

hanced CSS and is only slightly heavier than CSS-BBBC.

Table 3 presents the natural frequencies of the optimized

structures obtained by different methods. All of the constraints

are satisfied according to the table with an exception of the struc-

ture found by Sedaghati et al. [24]

The convergence curve of the best run of the MCSS optimiz-

ing the 10-bar planar truss is depicted in Fig. 3.

Example 2: A 72-bar spatial truss

A 72-bar space truss as shown in Fig. 4 is considered as

the second example. This problem has been studied previ-

ously by Wu and Chow [30], Li et al [31] and Kaveh and Ta-

latahari [32] among others. The material density is 0.1 lb/in3

(2767.990 kg/m3) and the modulus of elasticity is 10,000 ksi

(68,950 MPa). The members are subjected to stress limitations

of ±25 ksi (±172.375 MPa). The uppermost nodes are subjected

to displacement limitations of ±0.25 in (±0.635 cm) both in x

and y directions. The discrete variables are selected from Ta-

ble 4. The loading conditions applied to the structure are listed

in Table 5. The elements of this structure are grouped in 16

groups according to Table 6.

Optimal results obtained by different methods are listed in

Table 7. It can be seen that the MCSS algorithm has obtained

the best results. Fig. 5 represents the convergence curve of the

best run of MCSS for the 72-bar spatial truss.

Fig. 4. Node and element numbering scheme for the 72-bar spatial truss

Magnetic charged system search for structural optimization 2072014 58 3



Tab. 1. Material properties, variable bounds and frequency constraints for the 10-bar truss structure

Property/unite Value

E (Modulus of elasticity)/ N/m2 6.89 ×1010

ρ (Material density)/ kg/m3 2770.0

Added mass/ kg 454.0

Design variable lower bound/ m2 0.645 ×10−4

L (Main bar’s dimension)/ m 9.144

Constraints on first three frequencies/ Hz ω1 ≥ 7, ω2 ≥ 15, ω3 ≥ 20

Tab. 2. Optimal design cross sections (cm2) for several methods for the ten bar planar truss (weight does not include added masses).

Element Grandhi Sedaghati Wang Lingyun Gomes Kaveh and Zolghadr
Present

number

and

Venkayya

[23]

et al.

[24]

et al.

[25]

et al.

[26]
[27]

Standard

CSS

[28]

Enhanced

CSS

[28]

CSS-

BBBC

[29]

work

1 36.584 38.245 32.456 42.23 37.712 38.811 39.569 35.274 37.727

2 24.658 9.916 16.577 18.555 9.959 9.0307 16.740 15.463 14.216

3 36.584 38.619 32.456 38.851 40.265 37.099 34.361 32.11 35.206

4 24.658 18.232 16.577 11.222 16.788 18.479 12.994 14.065 16.413

5 4.167 4.419 2.115 4.783 11.576 4.479 0.645 0.645 0.657

6 2.070 4.419 4.467 4.451 3.955 4.205 4.802 4.880 4.639

7 27.032 20.097 22.810 21.049 25.308 20.842 26.182 24.046 22.246

8 27.032 24.097 22.810 20.949 21.613 23.023 21.260 24.340 25.447

9 10.346 13.890 17.490 10.257 11.576 13.763 11.766 13.343 10.822

10 10.346 11.452 17.490 14.342 11.186 11.414 11.392 13.543 13.953

Weight

(kg)
594.0 537.01 553.8 542.75 537.98 531.95 529.25 529.09 535.31

Tab. 3. Natural frequencies (Hz) of the optimized structures (the ten-bar planar truss)

FrequencyGrandhi Sedaghati Wang Lingyun Gomes Kaveh and Zolghadr
Present

number

and

Venkayya

[23]

et al.

[24]

et al.

[25]

et al.

[26]
[27]

Standard

CSS

[28]

Enhanced

CSS

[28]

CSS-

BBBC

[29]

work

1 7.059 6.992 7.011 7.008 7.000 7.000 7.000 7.000 7.000

2 15.895 17.599 17.302 18.148 17.786 17.442 16.238 16.119 16.244

3 20.425 19.973 20.001 20.000 20.000 20.031 20.000 20.075 20.002

4 21.528 19.977 20.100 20.508 20.063 20.208 20.361 20.457 20.066

5 28.978 28. 173 30.869 27.797 27.776 28.261 28.121 29.149 27.796

6 30.189 31.029 32.666 31.281 30.939 31.139 28.610 29.761 29.520

7 54.286 47.628 48.282 48.304 47.297 47.704 48.390 47.950 48.994

8 56.546 52.292 52.306 53.306 52.286 52.420 52.291 51.215 51.492
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Tab. 4. The available cross-sectional areas of the ASIC 1989 code [33].

No. in2 mm2 No. in2 mm2

1 0.111 71.613 33 3.840 2477.423

2 0.141 90.96786 34 3.870 2496.778

3 0.196 126.4518 35 3.880 2503.229

4 0.250 161.2905 36 4.180 2696.778

5 0.307 198.0648 37 4.220 2722.584

6 0.391 252.2584 38 4.490 2896.778

7 0.442 285.1617 39 4.590 2961.294

8 0.563 363.2263 40 4.800 3096.778

9 0.602 388.3876 41 4.970 3206.456

10 0.766 494.1942 42 5.120 3303.23

11 0.785 506.4523 43 5.740 3703.231

12 0.994 641.2912 44 7.220 4658.071

13 1.000 645.1622 45 7.970 5141.942

14 1.228 792.2591 46 8.530 5503.233

15 1.266 816.7753 47 9.300 6000.008

16 1.457 940.0013 48 10.850 7000.009

17 1.563 1008.388 49 11.500 7419.365

18 1.620 1045.163 50 13.500 8709.689

19 1.800 1161.292 51 13.900 8967.754

20 1.990 1283.873 52 14.200 9161.303

21 2.130 1374.195 53 15.500 10000.01

22 2.380 1535.486 54 16.000 10322.59

23 2.620 1690.325 55 16.900 10903.24

24 2.630 1696.776 56 18.800 12129.05

25 2.880 1858.067 57 19.900 12838.73

26 2.930 1890.325 58 22.000 14193.57

27 3.090 1993.551 59 22.900 14774.21

28 1.130 729.0332 60 24.500 15806.47

29 3.380 2180.648 61 26.500 17096.8

30 3.470 2238.713 62 28.000 18064.54

31 3.550 2290.326 63 30.000 19354.86

32 3.630 2341.939 64 33.500 21612.93

Tab. 5. Loading conditions for the 72-bar space truss.

node Case 1 Case 2

Px kips (kN) Py kips (kN) Pz kips (kN) Px kips(kN) Py kips(kN) Pz kips (kN)

1 0.5(-22.25) 0.5(22.25) -0.5(-22.25) _ _ -0.5(-22.25)

2 _ _ _ _ _ -0.5(-22.25)

3 _ _ _ _ _ -0.5(-22.25)

4 _ _ _ _ _ -0.5(-22.25)
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Tab. 6. Element grouping for the 72-bar truss.

Group number Elements Group number Elements

1 A1–A4 9 A37–A40

2 A5–A12 10 A41–A48

3 A13–A16 11 A49–A52

4 A17–A18 12 A53–A54

5 A19–A22 13 A55–A58

6 A23–A30 14 A59–A66

7 A31–A34 15 A67–A70

8 A35–A36 16 A71–A72

Tab. 7. Comparison of optimal designs for the 72-bar spatial truss structure

Variables (in2)
Wu and Chow

[30]
Li et al. [31]

Kaveh and

Talatahari [32]
Present work in2 (cm2)

CSS MCSS

1 0.196 4.97 1.800 0.141 (0.91) 0.141 (0.91)

2 0.602 1.228 0.442 0.391 (2.52) 0.391 (2.52)

3 0.307 0.111 0.141 0.196 (1.26) 0.196 (1.26)

4 0.766 0.111 0.111 0.563 (3.63) 0.442 (2.85)

5 0.391 2.880 1.228 0.250 (1.61) 0.307 (1.98)

6 0.391 1.457 0.563 0.307 (1.98) 0.307 (1.98)

7 0.141 0.141 0.111 0.111 (0.72) 0.111 (0.72)

8 0.111 0.111 0.111 0.111 (0.72) 0.111 (0.72)

9 1.800 1.563 0.563 1.228 (7.92) 1.266 (8.17)

10 0.602 1.228 0.563 0.391 (2.52) 0.307 (1.98)

11 0.141 0.111 0.111 0.111 (0.72) 0.111 (0.72)

12 0.307 0.196 0.250 0.111 (0.72) 0.111 (0.72)

13 1.563 0.391 0.196 1.563 (10.08) 1.99 (12.84)

14 0.766 1.457 0.563 0.307 (1.98) 0.307 (1.98)

15 0.141 0.766 0.442 0.111 (0.72) 0.111 (0.72)

16 0.111 1.563 0.563 0.111 (0.72) 0.111 (0.72)

Weight (lb) 427.203 933.09 393.380
391.063

(176.95kg)

388.936

(175.99 kg)
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Fig. 5. Convergence curve of the best run for the 72-bar spatial truss

According to Table 7, MCSS obtains the lightest structure

among the present methods. For further comparison, the

problem is also solved using the standard CSS. It can be seen

that the MCSS performs slightly better than the standard CSS.

Example 3: A one-bay eight-story frame

Configuration and the applied loads of a one-bay eight-story

frame are depicted in Fig. 6. Several researchers have optimized

this structure using different optimization approaches. Khot et

al. [34] used an optimality criterion to investigate it. Camp et

al. [35] optimized it using a Genetic algorithm and Kaveh and

Shojaee [36] and Kaveh and Talatahari [37] utilized ACO and

IACO to solve it.

The 24 elements of the structure are grouped into 8 design

variables; the same beam section to be used for two consecutive

stories, beginning at the foundation, and that the same column

section is used every two consecutive stories. The only perfor-

mance constraint is considered to be the structure’s lateral drift

at the top story (no more than 5.08 cm). The modulus of elas-

ticity of the material used is taken as E = 200 GPa. All frame

sections are chosen from the entire set of 267 W-shapes.

Table 8 presents a comparison between the best results ob-

tained by different methods for the one-bay eight-story frame.

Fig. 7 shows the convergence curve of the best run for the one-

bay eight-story frame.

Table 8 indicates that the present algorithm has obtained the

best result for this example. Comparison of the results shows

that the performance of MCSS is better than that of CSS.

Example 4: A 3-bay 24-story frame

Topology and applied loads of a 3-bay 24-story frame are de-

picted in Fig. 8. This structure has been designed originally

by Davison and Adams [38]. Saka and Kameshki [39] utilized

a GA algorithm to obtain a least-weight design conforming to

AISC specifications [23] and to BS 5950 [40]. Camp et al. [41]

utilized ACO conforming to AISC specifications [23]. Kaveh

Fig. 6. A one-bay eight-story frame

Fig. 7. Convergence curve of the best run for the one-bay eight-story frame

and Talatahari [37] used an improved ACO to develop a design

conforming to the LRFD specification (AISC 2001) and used an

inter-story drift displacement constraint. Kaveh and Talatahari

[42] utilized standard CSS to optimize the structure using the

same constraints. Here LRFD interaction formula (AISC 2001)

together with inter-story drift is considered as performance con-

straints. The modulus of elasticity of the material is taken as

E = 205 GPa and it’s yield stress as fy = 230.3 MPa.
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Tab. 8. Comparison of the best results for the one-bay eight-story frame

Element

group no.
AISC W-shapes

Element

group

Khot et al.

[34]

Camp et

al. [35]

Kaveh

and

Shojaee

[36]

Kaveh

and

Talatahari

[37]

Proposed algorithm

CSS MCSS

1
Beam

1-2S
W21X68 W18X35 W16X26 W21X44 W21X44 W16X31

2
Beam

3-4S
W24X55 W18X35 W18X40 W18X35 W16X31 W18X35

3
Beam

5-6S
W21X50 W18X35 W18X35 W18X35 W16X26 W16X26

4
Beam

7-8S
W12X40 W18X26 W12X22 W12X22 W16X26 W16X26

5
Column

1-2S
W14X34 W18X46 W18X40 W18X40 W18X40 W21X44

6
Column

3-4S
W10X 39 W16X31 W16X26 W16X26 W14X30 W18X35

7
Column

5-6S
W10X 33 W16X26 W16X26 W16X26 W16X26 W14X22

8
Column

7-8S
W8X 18 W12X16 W12X14 W12X14 W12X19 W12X14

Weight

(kN)
41.02 32.83 31.68 31.05 31.73 30.98

Note: S = story

The structure’s 168 elements are grouped as follows: the same

beam section is used in the first and third bay on all floors except

for the roof, the beams of the second bay share the same section

on all floors except for the roof, the first and third bay beams

on the roof share the same section, the beam of the second bay

on the roof is an independent variable. This results in 4 beam

groups. The exterior columns are combined into one group and

the interior columns are combined into another group over three

consecutive stories beginning from the foundation. This results

in 16 column section groups.

The effective length factor of the members are calculated as

Kx ≥ 1 for a sway-permitted frame and the out-of-plan effective

length factors are considered as Ky = 1. All of the members are

assumed to be unbraced along their lengths.

Two different optimization cases are considered here. In Case

1 the beam sections can be selected from the entire list of W-

shapes while the columns are restricted to W14 sections. In Case

2 all the elements are free to be chosen from the entire list of W-

shapes.

According to Table 9, the present algorithm finds the best re-

sults in both cases. It is also seen that the MCSS performs better

than the standard CSS for the cases considered in Kaveh and

Talatahari [42].

Fig. 9 and Fig. 10 show the convergence curves of the best

runs of MCSS for the 3-bay 24-story frame structure in Case 1

and Case 2, respectively. Fig. 11 and Fig. 12 represent the stress

ratios for the members of the 3-bay 24-story frame in Case 1 and

Case 2, respectively. Fig. 13 depicts the inter-story drift of the

optimal structures in Cases 1 and 2.

5 Concluding remarks

A newly proposed meta-heuristic algorithm named Magnetic

Charged System Search Kaveh et al. [20], which can be con-

sidered as an extension of the standard CSS proposed by Kaveh

and Talatahari [19], is utilized here for optimal design of truss

and frame structures.

MCSS maintains some extra information about the search

space by introducing additional forces called magnetic forces

into the standard CSS. These forces are supposed to portray the

improvements of the objective function values of the CPs ignor-

ing their relative excellence among the population.

The MCSS algorithm is applied to four structural examples

including trusses and frames with different performance con-

straints. Comparisons of the obtained results with those avail-

able in the literature indicate the superiority of the algorithm

in finding optimal solutions in the studied examples. Compar-

isons show that the MCSS generally performances better than

the standard CSS.
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Tab. 9. Comparison of the optimal structures attained by different researchers for the 3-bay 24-story frame.

Element

group no.
AISC W-shapes

Element

group
Saka and Kameshki [39]

Camp et

al. [41]

Degertekin

[43]
Kaveh and Talatahari [37] [42] Present algorithm

Case 1 Case 2 Case 1 Case 1 Case 2

1

Beam

1-23S,

Bay 1,3

838X292X194UB W30X90 W30X90 W30X99 W30X99 W30X90 W27X84 W30X90

2

Beam

24S, Bay

1,3

305X102X25UB W8X18 W10X22 W16X26 W10X33 W21X50 W14X22 W14X22

3

Beam

1-23S,

Bay 2

457X191X82UB W24X55 W18X40 W18X35 W18X35 W21X48 W21X48 W18X35

4

Beam

24S, Bay

2

305X102X25UB W8X21 W12X16 W14X22 W16X31 W12X19 W14X22 W14X22

5
Column

1-3S, E
305X102X25UC W14X145 W14X176 W14X145 W36X170 W14X176 W14X145 W27X102

6
Column

4-6S, E
305X368X129UC W14X132 W14X176 W14X132 W30X116 W14X145 W14X176 W30X132

7
Column

7-9S, E
305X305X97UC W14X132 W14X132 W14X120 W30X116 W14X109 W14X109 W30X108

8
Column

10-12S, E
356X368X129UC W14X132 W14X109 W14X109 W24X62 W14X90 W14X109 W27X84

9
Column

13-15S, E
305X305X97UC W14X68 W14X82 W14X48 W24X62 W14X74 W14X90 W14X43

10
Column

16-18S, E
203X203X71UC W14X53 W14X74 W14X48 W18X60 W14X61 W14X43 W18X71

11
Column

19-21S, E
305X305X118UC W14X43 W14X34 W14X34 W16X36 W14X34 W14X43 W24X55

12
Column

21-24S, E
152X152X23UC W14X43 W14X22 W14X30 W10X33 W14X34 W14X22 W30X90

13
Column

1-3S, I
305X305X137UC W14X145 W14X145 W14X159 W24X76 W14X145 W14X145 W24X68

14
Column

4-6S, I
305X305X198UC W14X145 W14X132 W14X120 W14X74 W14X132 W14X120 W21X62

15
Column

7-9S, I
356X368X202UC W14X120 W14X109 W14X109 W24X62 W14X109 W14X132 W14X90

16
Column

10-12S, I
356X368X129UC W14X90 W14X82 W14X99 W24X62 W14X82 W14X90 W16X67

17
Column

13-15S, I
356X368X129UC W14X90 W14X61 W14X82 W18X46 W14X68 W14X68 W27X114

18
Column

16-18S, I
356X368X153UC W14X61 W14X48 W14X53 W18X46 W14X43 W14X61 W24X55

19
Column

19-21S, I
203X203X60UC W14X30 W14X30 W14X38 W18X35 W14X34 W14X26 W24X55

20
Column

21-24S, I
254X254X89UC W14X26 W14X22 W14X26 W16X31 W14X22 W14X22

W10X12

Weight

(kN)
958.75 980.63 955.74 967.33 884.88 945.2 925.64 877.22
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Fig. 8. A 3-bay 24-story frame

Fig. 9. Convergence curve of the best run for the 3-bay 24-story frame (Case

1)

Fig. 10. Convergence curve of the best run for the 3-bay 24-story frame

(Case 2)

Fig. 11. Stress ratios of the members for the 3-bay 24-story frame (Case 1)

Per. Pol. Civil Eng.214 Ali Kaveh / Ali Zolghadr



Fig. 12. Stress ratios of the members for the 3-bay 24-story frame (Case 2)

Fig. 13. Inter-story drifts of the optimal structures in Cases 1 and 2
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