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Abstract

This paper presents the basics of Bellmann’s dynamic pro-

gramming, to be applied for radial fixed-track district heating

networks. A decision-making model thereof is produced, and

Garbai’s scaling method [1] is applied in a new, narrower inter-

val by using a tagging method well-known from computer sci-

ence. Thereby the result yielded coincides with that of the pre-

vious method, but the number of calculations to be performed is

reduced considerably.

Keywords

district heating · optimal pipe diameters · dynamic program-

ing · optimization

László Garbai

Department of Building Service and Process Engineering, Budapest University
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1 Introduction

Public utilities in network systems perform very important

tasks in the life of settlements. District heating systems rep-

resent a most sophisticated technology among public utility net-

works. They are highly asset-intensive, their development and

operation are costly; at the same time, they play a major role in

energetics as they provide space and opportunities for combined

heat and power generation. 650 thousand apartments, most of

them built by using a system building technology in the course

of the past few decades, are supplied with district heating. The

economic optimization of the construction and operation of dis-

trict heating networks can make district heating much cheaper.

Construction optimization refers to the specification of optimal

pipe diameters.

Specification of optimal pipe diameters for district heating

systems involves the selection of a conduit diameter for each

section of the district heating system whereby the annual pro-

portion of the investment cost of the network, the annual direct

cost of operation, as well as the aggregate cost of hot water cir-

culation and heat loss are minimized.

An efficient solution for this problem, effective from the en-

gineering point of view and of substantial practical value, is still

missing.

This problem arose in the 1960 s and 1970 s. Attempts in

those times were characterized by a search for so-called ana-

lytic solutions. Diameters and costs were taken into considera-

tion with continuous value series. The diameters yielded were

rounded to standard by diverse heuristic procedures. The ”dis-

tance” between the standard diameters thus yielded and the real

optimum was left unexplored [5–12].

Subsequent models were already characterized by best-first

searches on sets of standard diameters using discrete diameter

series and discrete cost functions. Extremum search was per-

formed on discrete sets by various counting structures, such as

the Branch and Bound method and dynamic programming [1,2].

Theoretically, dynamic programming proved to be a stable

and convergent method. When applying this method, however,

the rapidity of convergence and hitting the global optimum were

failed to be analyzed. Bellmann’s optimality principle is used in
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our practice of applying this method. The state variable to con-

nect stages of decision making at nodes, that is, junction points

of mains and branch-off conduits, is pressure difference between

the forward and return conduits. Most frequent division thereof

can make the solution even more accurate. Search for a solu-

tion can also be taken as a task of trying to find an optimal route

[1, 2].

This study presents a procedure based on dynamic program-

ming, to guarantee convergence and finding the global optimum.

The task is discussed with a systems theory and decision mak-

ing theory approach; furthermore, efficiency of the method and

error margins are discussed.

2 Task specification

Fig. 1 shows the topology image, structure and basic fea-

tures of a district heating network. The network presented is ra-

dial, consisting of consumers, conduit sections connecting con-

sumers, and a circulation system (pump). Conduit sections con-

sist of a forward and a return conduit each. Conduit sections

are separated by nodes. Basic geometric properties of conduit

sections include conduit length and conduit diameter.

Fig. 1. District heating network: an illustration

Legend:

F consumer

L conduit length

d conduit diameter

Q̇ heat demand

V̇ hot water flow rate demand

Fig. 2 shows the graph of the district heating network in

Fig. 1. A graph is a mathematical structure consisting of nodes

and edges. The graph of a radial network is called a tree-

structured graph. This graph serves for the hydraulic, thermal

engineering, and mathematical modelling of district heating net-

work design and operation.

A graph-based modelling and optimization of district heating

networks are presented by using so-called decision making sys-

tems. From a systems theory point of view, radial fixed-track

district heating networks generally constitute diverging branch

decision making systems (see Fig. 4) [3, 4]. The simplest dis-

trict heating networks form a serial system. A decision making

system shows inputs and outputs, decision making variables, the

Fig. 2. Simplified model and graph of district heating network

transformation correlations linking them, and decision making

results. The aim of decisions is to make decisions in function of

the input and the required output of the system in order for the

economic target function describing system operation to reach a

minimum. Fig. 3 shows a model of a decision making system in

a white box representation.

Dynamic programming is a mathematical method to optimize

series of interdependent decisions [1]. The criterion for each

decision in the series of decisions is to satisfy the optimality

principle of dynamic programming. The original definition of

the optimality principle states that: ”An optimal decision mak-

ing series is always characterized by the fact that whatever the

initial state and the initial decision is, subsequent decision(s)

constitute an optimal decision making series compared to the

new state resulting from the first decision and the initial state”

[1]. Decision making systems are broken down into stages of

decision making (subsystems). According to the principle of

optimality, decisions should be made by taking into considera-

tion the options within the entire decision making process and

should be optimal compared to the given state of the system. In

the mathematical sense, our decisions satisfy a recursive func-

tion equation. The function equation of a serial system is as fol-

lows, using the notation of the general decision making process

(Fig. 4):

O (zm) = min
um

{ fm (zm, um) + O (zm+1)} . (1)

And by introducing the state transformation to characterize

given stage:

O (zm) = min
um

{ fm (zm, um) + O (g (zm, um))} . (2)

By applying state transformation, the function equation will

be a function of only the connection variable (zm) and the deci-

sion making variable (um). O (zm) is the so-called optimal func-

tion, containing optimal decisions associated with decision mak-

ing stages in respect of each value of the connection variable zm.

3 Optimization of serial decision making systems by

dynamic programming

Fig. 4 shows an abstract decision making model for serial sys-

tems. A decision making model is also termed as a white box
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Fig. 3. Decision making system illustration

model. This model includes decision making variables (um), de-

cision making results ( fm), and correlations between inputs and

outputs (balance equations for the most part) (gm).

Optimization can be performed by backward or forward re-

cursion. Recursive optimization backwards is most frequently

applied as the system output – generally a consumer demand,

e.g. heat demand – can be considered as given. In backward re-

cursion, the function equation is solved recursively, from stage

to stage, starting from the last stage, by a backward analysis of

state transformations. This means that a set of optimal solutions

– in respect of the totality of the stages examined – is generated

for the given stage, in function of state variable zm, by appro-

priate selection of the decision making variable Um. The task is

broken down into a series of subtasks by stating and solving the

recursive function equation stage by stage.

3.1 Optimization of serial systems by backward recursion

Target function:

C = f1+ f2+. . .+ f ′M+ fM+1+ f ′1+. . .+ f ′L−1+. . .+ fN−1+ fN → min!.

(3)

In fact, optimization is a conditional extremum calculation

where conditional equations are represented by the transforma-

tion correlations written in the boxes. Independent variables

include decision making variables, which – if appropriately

selected – can minimize the target function.

First step:

To state the function equation starting from the last member.

O (zn−1) = min
UM

{ fn−1 (zn−1, un−1) + fn (zn)} . (4)

It holds true that:

zn = gn−1 (zn−1, un−1) . (5)

The inverse of the function is used to express un−1,

un−1 = g−1
n−1 (zn−1, zn) . (6)

To be substituted Eq. (3), Eq. (4):

O (zn−1) =
{
fn−1

[
zn−1, g

−1
n−1 (zn−1, zn)

]
+ f (zn)

}
. (7)

After this step, the optimum of our target function Eq. (3),

Eq. (7) will only depend on the input and output variables.

Nevertheless, zn is given in general as zn is the demand to be

satisfied. There is no opportunity for optimization.

Second step:

The optimization equation is stated for the next box as well,

to include the previous optimum function, too:

O (zn−2) = min { fn−2 (zn−2, un−2) + O (zn−1)} . (8)

By using the equation in the box:

zn−1 = gn−2 (zn−2, un−2) . (9)

Therefore:

O (zn−2) = min
un−2

{ fn−2 (zn−2, un−2) + O (gn−2 (zn−2, un−2))} . (10)

As our equation is minimized to the value of un−2, by substi-

tuting the optimum value of un−2 the only parameter to remain

will be zn−2. By continuing optimization, the value of Om is

determined by the method presented above, to be followed by

reaching the value O1 to specify the optimum of the entire sys-

tem.
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Fig. 4. Decision making model of a serial system

A serial connection can also be effected by forward recursion.

By using this recursion, u1 can be eliminated, but z1, and z2 will

remain. If the value of z1 is known, it can be omitted after the

first step; if it is unknown, it will figure in our functions as an

unknown all throughout the optimization process.

3.2 Diverging branch system investigation

Fig. 5 shows the basic model for analyzing a diverging branch

system.

Target function:

C = f1+ f2+. . .+ f ′1 +. . .+ f ′L−1+. . .+ fN−1+. . .+ fN → min! (11)

When examining diverging branch systems (Fig. 5), those

steps of the optimization process are presented when the task

derogates from what is described in the case of serial systems.

The equations stated for the optimization of serial systems are

applied for diverging branch systems. The connection stage is

reached along the branches by backward recursion. The prob-

lem is the connection stage. The following equations can be

stated for the connection stage:

O (zM) = min
UM

{
fm

(
zm,um

)
+ O′1

(
z′1

)
+ Om+1 (zm+1)

}
(12)

After substituting the transformation equations:

O (zM) =min
UM

[
fM (ZM ,UM) + O

′

1

(
g
′

M (ZM ,UM)
)
+

+OM+1 (gM+1 (ZM ,UM))
] (13)

After determining O (zm), progress is made along the main

branch until reaching stage one. And at stage one, the optimiza-

tion function of the entire diverging branch system is yielded.

4 Optimization of district heating networks by dynamic

programming

In a white box representation, radial pipe networks constitute

a complex diverging branch system of decision making from the

systems theory point of view; theoretical optimization thereof

was presented in Chapter 3.

Fig. 6 shows a decision making system for the optimization

of radial pipe networks in a white box layout.

• The decision making variables (d jk and d′
jk

) of system ele-

ments, of each ”stage”, are sets of standard diameters as-

signed to the pipe section symbolized by the white box (there-

fore eligible).

• Decision making results ( f jk , f ′
jk

and f ∗
jk

) represent the costs

incurred in the given stage (along the pipe section concerned)

by applying standard diameters.

• Costs of type f jk include the total costs of pumping
(
K1 jk

)
,

investment
(
K2 jk

)
and heat loss

(
K3 jk

)
along the section con-

cerned during the lifetime of the network, by applying a stan-

dard diameter, discounted, in a comparable format. There-

fore:

f jk = K1 jk

(
d jk

)
+ K2 jk

(
d jk

)
+ K3 jk

(
d jk

)
, (14)

f jk =
∑

t

V̇ jk ∆p jk

η
τü, jk ,t fEa jk ,t + K2 jk

(
d jk

)
+ K3 jk

(
d jk

)
, (15)

• f ′
jk

is the same as f jk , only with d′
jk

.

• Costs of type f ∗
jk

include the costs of extra pumping to arise

by stemming as required for establishing the fluid flows as

demanded in the course of system adjustment. The white box

represents a node at the junction of branches.
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Fig. 5. Decision making model of a serial system

f ∗jk =
(
h∗jk − h′jk

)
V̇ ′jk

τü, jk fE

η
. (16)

In the formulas:

Legend:

V̇ jk flow rate,

∆p jk pressure loss,

τü, jk uptime,

fE unit cost of electric power,

η pumping efficiency.

• Pressure values are prescribed at the end of each branch:

∆p′jk ,0 = constant. (17)

• Pressure values at each node may not exceed the limits pre-

scribed:

h∗jk ≤ R jk . (18)

The total cost of the pipe network is obviously the aggregate

of the costs of sections. Therefore the network optimality crite-

rion is:

f = fN2
+ f ′N2

+ f ∗N2
+ fN2−1 + f ′N2−1 + f ∗N2−1 + . . .+

+ f jk + f ′jk + f ∗jk + . . . + fl1 + f ′l1 + f ∗l1 → min.
(19)

Appropriate recursive function equations are constructed in

order to optimize the system.

Node pressures h∗
jk

are selected as connection variables of sys-

tem elements. Thereby

O
(
h∗jk

)
=min

d jk

[
f jk

(
d jk

)
+ f ∗jk

(
h∗jk , h jk , h

′
jk

)
+

+O′jk

(
h′jk

)
+ O

(
h∗jk+1

)]
.

(20)

Correlations between connection variables – that is, state

transformations – are as follows:

h′jk ≤ h∗jk , (21)

h jk = .h∗jk+1
+ ∆p jk ≤ h∗jk . (22)

State transformations are used to establish connections be-

tween node pressures. Consumer demands can be satisfied,

branch flows can be adjusted only by stemming some of the

branches in general. Node pressure is determined by pressure

drop either in the consumer branch or the mains, depending on

which is the higher. In order to transfer the required flow, the

branch of less resistance must be stemmed. This is expressed by

relations (18) and (22), according to which pressure at a node

may not be less than the value of the preceding node pressure

increased by pressure loss along the section connecting the two

nodes.

The decision making system shown in Fig. 6 provides infor-

mation about both decisions on the optimal diameters of the

network and network adjustment. The decision making system

in Fig. 7 was constructed to model decisions on network opti-

mization in the strict sense only. Costs of additional pumping

due to model network adjustment are taken into consideration at

the resulting input pressure since the total pumping work of the

pipe network is known to be a unique, monotonically increasing

function of the input pressure. Thus, pumping costs can be as-

sociated with the cost of the first element (box) in the decision

making system, as a function of the input pressure. Thereby the

cost of the first system element will be:

f ∗l1 =
V̇l1 h∗

l1
τü

η
fE . (23)
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And the cost of the rest of the system elements will be:

f jk = K2, jk

(
d jk

)
+ K3, jk

(
d jk

)
, (24)

Pumping work calculated by the input pressure a priori also

includes the costs of additional pumping due to system adjust-

ment; accordingly:

f ∗jk = 0. (25)

The recursive function equation expressing the optimality

principle can be stated as follows:

O jk

(
h∗jk

)
= min

d jk

[
f jk

(
d jk

)
+ O jk+1

(
h∗jk+1

)
+ O′jk

(
h′jk

)]
. (26)

Correlations between connection variables do not change,

therefore:

h′jk ≤ h∗jk ,

h∗jk+1
+ ∆p jk ≤ h∗jk .

(27)

In decision making system optimization, node pressures

(pressure differences) h∗
jk

are taken as a series of discrete values

located sufficiently densely. In the current stage of optimization,

network parts O jk

(
h∗

jk

)
of minimal cost are produced in function

of the discrete values of node pressure h∗
jk

, by an appropriate se-

lection of an optional standard diameter d∗
jk

which complies with

the speed limits prescribed. When solving the function equation,

costs of the network section up to stage jk are minimized by se-

lecting values which, in the aggregate, yield a minimum figure,

from the discrete empirical costs of the network section up to the

(already optimized) stage jk+1 (parametrically, in function of the

discreet values of node pressure h∗
jk+1

), and those of the standard

diameters d jk and d′
jk

of stage jk, reflecting all circumstances

related to topology and laying.

Pipe networks can be optimized either by fixing or not fixing

the input pressure (perhaps only by using an upper boundary

to limit the input pressure). It does not constitute a theoretical

and substantial methodological restriction for discrete dynamic

programming if the value of the input pressure is prescribed.

At this point, in the first stage of the decision making system

(and the last one in the sequence of optimization operations),

the determination of pumping work is disregarded in cost cal-

culations. From the discrete value series of input pressure h∗
l1

,

constituting the input of this stage (as a parameter), the one co-

inciding with the prescribed input pressure is selected (such dis-

crete value series can be compiled arbitrarily), and the last stage

is optimized – the cost function O
(
h∗

l1

)
is minimized only for

this single value (h∗
l1

= const.).

In the event that no input pressure is strictly prescribed, pump-

ing costs are assigned to the first element of the decision making

system in function of input pressure h∗
l1

, constituting the input to

the first ”box” (considered as a variable). After solving the func-

tion equation stated on the first ”box”, the optimal input pressure

is also determined by comparing the optimal costs O
(
h∗

l1

)
and by

selecting the minimum cost.

It is conspicuous that in the successive solutions of the recur-

sive function equation, all technical and economic requirements

can be fully satisfied, and the topology, hydraulics and cost con-

ditions of the network can be precisely analyzed simultaneously

with optimization.

The success of optimization depends on increasing the break-

down frequency of pressure differences at nodes. Fig. 8 pro-

vides a model for latticing pressure differences at nodes accord-

ing to classic optimization, taking a simple network as an exam-

ple (Fig. 9).

A minimum and a maximum diameter can be taken into con-

sideration for each conduit section, with the optimal diameter

expected to be somewhere in between. The upper and lower

boundaries of the pressure figure are specified by the pressure

losses calculated by using the minimum and maximum diam-

eters, as shown in the figure. Latticing the nodes of the pres-

sure figure will yield a graph on which the task of searching for

the optimal route can be defined. The problem is the frequency

of node selection within the graph. The following model can

be applied for the size of the error possible to be committed.

The optimum of the cost function should be estimated. Then a

so-called unconditional optimization of the network should be

performed, defining independently the standard conduit diame-

ter for each conduit section where the investment cost, heat loss

cost and flow cost of the section are minimal in the aggregate.

Then the pressure image of the network should be constructed

and costs should be added up according to Fig. 9.

In order to equalize pressures, stemming must be performed

at the node in consumer branch-offs to adjust the required flow

rates. Such stemming actions increase pumping costs. Curve

(A) shows network costs, while curve (B) shows increased re-

sultant costs arising from additional pumping due to stemming.

The optimum to be found in the set of standard pipe diame-

ters cannot be smaller than the value of curve (A); and the exact

optimum can be located between curves (A) and (B) if it ex-

ists at all. Let us try to find a solution between curves (A) and

(B) Optimization should be performed using the optimal diame-

ters defined according to independent optimums and their neigh-

bours, by applying Bellmann’s optimality principle and dynamic

programming: to understand it more easily, on a serial system

model similar to Fig. 7 (see Fig. 8)

Let the standard diameters to be taken into consideration for

conduit sections (1) and (2) be as follows:

{
d(1),1, d(1),opt, d(1),3

}
,
{
d(2),1, d(2),opt, d(2),3

}
So-called recursive optimization functions should be gener-

ated by tagging assigned to section (2) as follows:

O(2)1

(
d(2)1

)
=

{
K(2)1

(
d(2)1

)
+ K(1)i

(
d(1)i

)}
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Fig. 6. Decision making model of a diverging branch system
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Fig. 7. Decision making model for the optimization of radial fixed-track pipe networks as a diverging branch system of decision making
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Fig. 8. Lattice model of pressure differences at nodes

Fig. 9. Pressure and cost figure of the network by system-independent optimization
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Fig. 10. Network model for best-first search and positioning between curves (A) and (B)
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O(2)2

(
d(2)2

)
=

{
K(2)2

(
d(2)2

)
+ K(1)i

(
d(1)i

)}
O(2)3

(
d(2)3

)
=

{
K(2)3

(
d(2)3

)
+ K(1)i

(
d(1)i

)}
where:

i = 1, 2, 3

Recursive optimality functions should be generated by tag-

ging assigned to section (3), using the partial optimums O2 pre-

viously yielded as follows:

O(3)1

(
d(3)1

)
=

{
K(32) j

(
d(32) j

)
+ K(3)1

(
d(3)1

)
+ O(2)i

(
d(2)i

)}

O(3)2

(
d(3)2

)
=

{
K(32) j

(
d(32) j

)
+ K(3)2

(
d(3)1

)
+ O(2)i

(
d(2)i

)}

O(3)3

(
d(3)3

)
=

{
K(32) j

(
d(32) j

)
+ K(3)3

(
d(3)3

)
+ O(2)i

(
d(2)i

)}
where:

i = 1, 2, 3 j = 1, 2, 3

The procedure is continued in a recursive fashion and optimal

functions are stored in the meantime. In each stage of decision

making, an optimal diameter structure is associated with three

possible branch-off diameters. In each stage of decision making,

3 x 3 = 9 cost variants should be compared in respect of each tag.

When reaching the pump, optimization is performed for the last

3 tags. The previous optimal tag is associated with each tag, and

both the optimal diameters and the optimal pressure image can

be called in by moving backwards. If the cost function yielded

does not proceed below curve (B), then there is no network with

better costs than the concatenation of system-independent opti-

mums.

Example: Specify the optimum diameters of the radial hot

water district heating network shown in the figure attached

by the approximation procedure presented in this chapter

and by an optimization method based on dynamic program-

ming.

Note: The length of connecting conduits supplying con-

sumers F3, F13, F14, F15, F16, and F17 can be neglected be-

cause of their shortness.

The district heating network operates with a temperature step

of 110/55 °C; consumer and section data are included in Table 1

and Table 2.

Table 3 shows specific investment costs for standard pipe di-

ameters:

The HUF / running metre of track values used for investment

cost calculations are average values calculated on the basis of

recent years’ conduit construction experience.

Tab. 1. Data on radial hot water district heating network

Consumer Heat demand [kW]

F1 1,300

F2 662

F3 225

F4 762

F5 270

F6 360

F7 66

F8 540

F11 2,075

F10 1,010

F9 1,355

F12 1,998

F18 240

F17 240

F16 240

F15 240

F14 240

F13 240

F19 156

Tab. 2. Data on radial hot water district heating network

Section name Length [m]

1 440

11 14

2 125

21 24

22 54

3 67

31 6

4 54

41 73

42 77

43 100

5 71

51 51

6 184

61 26

62 83

63 74

64 4

7 84

71 99

72 27

73 25

74 50

75 40

76 50

77 20

8 42

81 100

9 160

Determination of optimal pipe diameters for radial fixed-track district heating networks 3292014 58 4



Fig. 11. Model of radial district heating network
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Tab. 3. Specific investment costs

Pipe diameter HUF / running metre of track

DN25 38,000

DN32 45,000

DN40 48,000

DN50 52,000

DN65 62,000

DN80 70,000

DN100 80,000

DN125 95,000

DN150 110,000

DN200 140,000

DN250 170,000

DN300 205,000

DN350 230,000

The first step is to specify a so-called system-independent op-

timum for each conduit section, that is, the minimum aggregate

cost of conduit section investment and hot water circulation. In

order to be able to determine the optimal conduit diameter, an-

nual operating costs and the write-off of annual investment costs

should be known. The minimum of the aggregate of these two

curves will determine the optimal standard diameter value for

the section concerned.

By way of an example, the system-independent optimum

of the conduit section supplying consumer F5 is determined

(Fig. 12).

The diagram clearly shows the minimum value of the function

at 0.05 m; pipe diameter DN50 associated with that value will

ensure an optimal total cost.

After calculations by system-based optimization on the net-

work illustrated, it can be established that the annual total cost

of the system has been reduced by 4% compared to dimension-

ing by system-independent optimization (Table 5).

The pressure diagram of the network is presented in Fig. 13

and the costs on the main run of the investigated network are

shown in Fig. 14.

5 Conclusions

Specification of optimal pipe diameters for district heating

systems involves the selection of a conduit diameter for each

section of the district heating system whereby the annual pro-

portion of the investment cost of the network, the annual direct

cost of operation, as well as the aggregate cost of hot water cir-

culation and heat loss are minimized.

An efficient solution for this problem, effective from the en-

gineering point of view and of substantial practical value, is still

missing. This paper presented a procedure based on dynamic

programming, to guarantee convergence and finding the global

optimum. The task is discussed with a systems theory and de-

cision making theory approach. Calculations were performed

for fifty hungarian district heating networks. Compared to the

common design method our optimalization method resulted in

Tab. 4. Pipe diameters calculated by system-independent and system-based

optimization

Section name

Pipe diameters Pipe diameters

calculated by calculated by

system-independent system-based

optimization optimization

1 DN100 DN100

11 DN65 DN50

22 DN40 DN40

2 DN100 DN100

21 DN80 DN65

3 DN125 DN125

31 DN50 DN32

4 DN150 DN150

43 DN50 DN50

42 DN25 DN25

41 DN50 DN50

5 DN150 DN150

51 DN65 DN50

6 DN150 DN150

61 DN125 DN100

63 DN80 DN80

64 DN100 DN80

62 DN125 DN100

7 DN250 DN250

71 DN125 DN125

77 DN40 DN40

76 DN50 DN50

75 DN65 DN50

74 DN80 DN65

73 DN100 DN80

72 DN100 DN100

8 DN250 DN250

81 DN32 DN32

9 DN250 DN250

Tab. 5. Comparison of system-independent and system-based optimization

Nodes

Aggregate cost System- System-

of system- independent based

-independent optimization + optimization +

optimization stemming cost stemming cost

[HUF thou / yr] [HUF thou / yr] [HUF thou / yr]

pump 9,140.17 10,954.59 10,485.32

(8) 7,784.07 9,598.48 9,129.21

(7) 7,233.57 9,028.90 8,559.63

(6) 5,586.59 6,795.18 6,678.29

(5) 3,888.42 4,192.09 4,142.20

(4) 3,394.77 3,610.58 3,583.17

(3) 2,608.11 2,801.95 2,774.55

(2) 2,281.25 2,433.02 2,410.14

(1) 1,556.71 1,608.15 1,602.55
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Fig. 12. Investment and operating costs of the conduit section supplying consumer F5

Fig. 13. Pressure diagram of the district heating network examined

Fig. 14. Pressure diagram of the district heating network examined
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4 - 5% cost saving. This improved variant of the dynamic pro-

graming described in the present paper have multiplied the speed

of the calculation. With optimums independent of the system its

possible to estimate the exact boundaries between which the op-

timum lies. This is the most important result of our paper as

no constraints were determined by other researchers before. We

have also proven that less calculation capacity is needed with

the labeling method.
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