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Abstract

Intense, short periods of rainfall cause the greatest number

of operational overflows, leading to the discharge of untreated

sewage in combined sewerage systems of large cities. The an-

nual amount of pollution can be estimated based on meteoro-

logical, orographic, surface coverage and hydraulic informa-

tion, by using a detailed hydraulic model of the sewerage sys-

tem. The most widely used hydrological models require input

for the initial loss in order to define the amount of water re-

maining in the catchment, which decreases the load of the sewer

and potentially, the amount of overflow. Earlier measurements

of the initial loss were made only in rainwater channels. The

results range from 0–6 mm in urban territory, which makes the

case-by-case identification of this model parameter very impor-

tant. A methodology is presented in this paper for calculating

the amount of initial loss in a combined system catchment with-

out any on-site measurements. The initial loss was identified for

a 4500 ha catchment of Budapest. In addition, the dependence

of the initial loss on the environmental temperature was anal-

ysed.
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1 Introduction

Numerical simulation is widely used in the hydrodynamic

analysis of sewer networks. Models range from simple soft-

ware, such as KAREN [13] or CityDrain [1] that calculate only

rainwater runoff from impervious surfaces, to very complex ur-

ban drainage models. Examples of the latter are MOUSE [5],

Infoworks [17] or Kanal++ [14], which model both complex

surface runoff and channel/pipe flow, including transition from

un-pressurised to pressurised pipe flow.

The model, in most cases, comprises four individual parts:

the rainfall input, the hydrological surface process, the hydro-

dynamics of surface flow and the hydrodynamics of the sewer

[16]. The most common hydrological models of surface pro-

cesses need input for the initial loss (hollow loss, depression

storage), known as the rainfall threshold, which defines the min-

imum rainfall necessary before surface runoff occurs from the

catchment [6].

In the case of natural catchment areas, the magnitude of initial

loss is typically 0–60 mm, with approximately 22 mm expected

value [7]. For Hungarian dense land 6.6 mm was proposed by

Csoma and Varga [4]. However, it is only a fraction of this value

in strongly urbanised areas. According to Boyd [2], it ranges

from 0–6 mm with a 1.4 mm average, which is in line with sev-

eral previous studies: Tholin and Keifer [15] Chicago USA,

1.6 mm; Melanen and Laukkanen [11] Finland, 0.4 to 1.0 mm;

Hollis and Ovenden [9] GBR, 0.5 mm, for roof and street ar-

eas. No measured hollow loss data are available for catchments

of combined sewer systems, which is the most typical kind of

sewer system in big cities.

Initial loss is calculated as the offset value of a fitted linear

function on the rainfall depth to runoff depth diagram of the in-

vestigated catchment. Some authors [2] suggest a fitted piece-

wise linear function of 2-3 segments in the rainfall/runoff dia-

gram to account for the runoff volume coming from areas of dif-

ferent permeability. The non-linearity of the rainfall/runoff di-

agram becomes more pronounced for large pervious catchment

areas. The measured rainfall and runoff characteristics of small

amounts of rain display a large scatter, which makes the offset

of the fitted trend uncertain.
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Fig. 1. Catchment area, rainfall gauges and sewage treatment plant

In our present study, the amount of mixed water runoff orig-

inating from a large catchment area of Budapest was investi-

gated at the treatment plant of Dél-Pest over a three-year period.

Methods for defining the amount of rainwater received at the

treatment plant and for calculating the hollow loss will be intro-

duced; furthermore, the dependence of hollow loss on environ-

mental temperature will be analysed.

Between 2005 and 2007, 67 % of rain events in the Dél-Pest

catchment area fell in the range of 0–5 mm. Therefore, the cal-

culated amount of rainwater received by the treatment plant is

very sensitive to the accurate setting of the initial loss, as is

the total amount of overflows. The presented methodology can

be applied in any combined sewerage systems for identifying

the initial loss, which is specific for the investigated catchment,

thereby increasing the accuracy of model predictions.

2 The investigated area

2.1 Catchment area

The data used in our calculations were the measured flow-

rate of inflowing water in the sewage treatment plant of Dél-pest

(DSZTV). Measurement data with 3-minute resolution were

processed for the years 2005–2007.

The treatment plant receives wastewater from four districts

of Budapest, which have a population of 280 000. The total

area of the catchment is 4500 ha and the part of it closest to the

treatment plant is a combined sewer catchment. According to

geoinformatical calculations, the size of the effective impervious

area is 391 ha.

Multi-storey buildings and blocks of flats are characteristic of

the combined sewer part of the area. The average surface slope

of the area is approximately 1%. Roof water and street water

connects to the drainage system in almost all cases.

Drained water is measured in the inlet pipeline of the treat-

ment plant, which is preceded by a storm water separation struc-

ture, limiting the flow rate to 4500 m3/h.

2.2 Rainfall intensity measurements

The Hungarian Meteorological Service provided rainfall in-

tensity data from two gauging stations in the catchment (see

Fig. 1), which had 10-minute temporal resolution and 0.1 mm

rainfall height resolution. Linsley et al. [10] suggested that for

an experimental catchment, the minimum requirement for the

number of stations is 1 gauging station per 2500 ha, in our case

it was 2 per 4500 ha.

3 Analysis of dry weather inflow data

The time resolution of the collected flow-rate data was 3 min-

utes and the collected data were averaged over 30 minutes in

order to filter out fluctuations due to switching the pumps on the

catchment. First, flow rate data for all days with precipitation

were excluded. The daily evolution of flow rate was than aver-

aged over a period of one month for the same days of the week.

The results of our calculations are shown in Fig. 2.

The evolution of influent sewage water is very similar on

working days (Monday-Friday) and on the weekend. The av-

erage amount of influent sewage water Q was defined for these

two groups of days according to the following expression of the

30-minute average of the measured flow rate (q):

Qa, i = s · qa,i + (1 − s) · Qa, i−1 (1)

in which a corresponds to the type of weekday (a = 1 workday,

a = 2 weekend), i is the time index and s = 0.25.

Surplus flow rates caused by rainwater were obtained

by subtracting the moving averaged dry weather flow rates

from smoothed (30-min averaged) instantaneous measurements.

These differences in dry weather cases were investigated

and were found having a normal distribution. The interval

±250 m3/h (two times the standard deviation of the differences)

around the average (0 m3/h) includes 95% of the data points.

Differences only above this threshold (250 m3/h) were consid-

ered in order to filter out data scattering.
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Fig. 2. Monthly average of the daily evolution of the fluctuating component of sewage flow rate on each day of the week

Fig. 3. Influent rainwater and mean rainfall intensity at Gauge 1 and 2
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As can be seen from Fig. 3, after defining influent rainwater,

the integration of rainwater flow rate following a rainfall event

is possible. The influent amount divided by catchment area was

further analysed as a function of rainfall depth. The latter can

be calculated by integrating the measured intensity data for in-

dividual rainfall events.

4 Defining rainfall events

Calculations were based on data measured by Gauge 1 in Dél-

Pest but data from Gauge 2 in Lágymányos were also used when

corrections and restrictions were made. The 3-year rainfall in-

tensity data with 10-minute resolution were decomposed to a

series of independent rainfall events. The temporal extent of

dry periods between two elements needed to be reduced in or-

der to save calculation time. The minimum necessary length

of dry period was obtained from the detailed hydraulic simula-

tion model of the sewerage system, as the duration needed to

achieve the volumetric flow rate of the dry period outflow after

an intense shower. This duration depends on the characteris-

tics of the catchment area and therefore, it had to be determined

specifically for the examined catchment area.

From the 3-year precipitation intensity datasets, 330 rainfall

events were identified. Extremely small rainfall events, where

rainfall height was less than 0.3 mm, were filtered out. The

resolution of the rainfall measurement was 0.1 mm and there-

fore, 0.3 mm could be detected; however, such rainfall amounts

are not expected to cause accurately measurable surplus water

yields.

The influent flow-rate is limited by a safety spillover, which

separates flow rates over 4500 m3/h. Regarding the initial

loss, rainfall of small height has much greater significance and

thus, the integral of the influent rainwater amount was lim-

ited at 5000 m3. This volume is equivalent to 1.28 mm rainfall

depth falling on the effective area of the impervious catchment

(391 ha).

In Fig. 4, 330 rainfall events are shown in a rainfall-runoff dia-

gram. A regression line, which is suggested in reference sources

[12], [3] would define the initial loss. Fig. 4 illustrates that the

events show high scatter and therefore, the uncertainties in the

parameters of a regression line would be unacceptably high. Fil-

tering conditions (FC) based on physical principles and a correc-

tion (CO) was applied to reduce dataset scattering.

4.1 Snow and frozen soil (FC1)

Snow events have to be filtered out from other types of pre-

cipitation because they enter the sewage system with an uncer-

tain delay. One part of the snow melts but an unknown portion

remains on different surfaces. Furthermore, soil may freeze in

cold weather, which reduces the infiltration capacity of soil and

therefore, runoff water may arrive from areas from which it nor-

mally does not. In order to eliminate these uncertainties, all

events for which the temperature was below 1◦C at the onset

were removed.

4.2 Repeated rainstorms (FC2)

A significant part of the rainfall series occurred with one rain-

fall event occurring soon after another. In these cases, rainwa-

ter presumably remained in small pools of the catchment area,

which reduced hollow loss. Rainfall events that occurred within

24 hours omitted from further research.

4.3 Second gauge involved (CO1)

Gauge 1 is located in the investigated basin but in some cases,

the results showed that the measured rainfall values were not

representative for the whole area. In order to increase the preci-

sion of rainfall measurement, the second gauging unit (Gauge 2)

was taken into account. The mean rainfall was then calculated

as the average of two measured values.

4.4 Rain with non-estimable spatial distribution (FC3)

After adding the second unit (Gauge 2), some spatially un-

defined events could be neglected. If rainfall was detected only

at the first unit, its spatial distribution could be uneven, increas-

ing the deviation of the results and therefore, all rainfall events

detected at one gauge only were filtered out.

5 Regression function

A piecewise linear function of three sections was fitted to

the dataset. The first horizontal segment represents the rainfall

threshold. The second segment refers to the proportional part of

the events; increasing rainfall increases the runoff amount. The

third segment corresponds to intense rainfall events when the

limiting condition was operational. Using the method of least

squares, the margins of the segments were optimised to the re-

maining 51 events. The resulting graph can be seen in Fig. 5.

The confidence interval of the regression function was calcu-

lated [8] after checking the normality of the distribution of the

dataset by chi probe.

6 Evaluation of the filtering conditions and correction

The effectiveness of the filtering conditions was evaluated by

means of deviation of the data points from the regression func-

tion in the proportional segment in the absence of the given FC

or CO. This part of the regression function influences the value

of the initial loss. The deviation was calculated for the runoff

value of the data points. The results are shown in Table 1.

As can be seen from Table 1, the deviation of the measured

runoff values would be at least 2 times higher in the absence of

any of FC1, FC2, FC3 or CO1, which underlines the importance

of data conditioning.

7 Effect of temperature on the initial loss

It can be supposed that a warmer surface will cause more

evaporation than a cold one. Evaporation increases the amount

of rainwater that does not flow into the sewer, potentially caus-

ing an apparent initial loss.
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Fig. 4. Rainfall events from 3-year data

Fig. 5. Rainfall-runoff diagram marked with ambient temperature regimes

Tab. 1. Reduction of data scattering by various filtering conditions and correction

Deactivated filtering condition or correction Deviation of the runoff [mm]

All corrections and filtering conditions are active 0.2

FC1 deactivated (Snow or frozen soil) 0.5

FC2 deactivated (Recurred rains) 0.58

CO1 deactivated (Only Gauge 1 used) 0.4

FC3 deactivated (Rain with uneven spatial distribution) 0.79 (only 1 value)
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For this investigation, the temperature measurement of the

Lágymányos OMSZ station was used. The rainfall-runoff dia-

gram supplemented with the environmental temperature values

can be seen in Fig. 5.

No significant correlation can be observed between the envi-

ronmental temperature and the initial loss in the 1–28 °C tem-

perature range.

8 Conclusions

The major novelty of this article is the description of a

methodology for the identification of initial loss of combined

sewer catchments. The research was motivated by the high sen-

sitivity of calculated spillover amount for the initial loss as-

sumed in the hydraulic model. Only a few measurements are

available for the initial loss in urbanized area and the variance

of this dataset suggests case by case identification of this model

parameter. Since most large cities operate combined sewerage

systems it was necessary to develop a method for estimating the

initial loss for combined system catchments on the basis of com-

monly available data.

Flow-rate of the influent mixed (sewage + rain) water at a

sewage treatment plant of a large catchment area in Budapest

was investigated in correlation with meteorological data for a

three–year period. The measured mixed water flow rate was sep-

arated into dry weather sewage and rainwater. Rainfall events

were identified in a 3-year rain gauge dataset. Effective rain

height was calculated by dividing the integral of rainwater in-

flow by the effective impervious area of the investigated catch-

ment.

The rain events displayed large scatter on the rainfall-runoff

diagram, which could be considerably decreased by assuming

three filtering conditions and a correction method. Elimination

of repeated rain events within a 24-hour time interval (FC2) was

found to be the most effective filtering condition, decreasing the

variance of data points on the rainfall-runoff diagram by a fac-

tor of three. Omission of those rain events that were observed in

only one of the two rain gauge stations (FC3) also had a massive

effect on the variance, but the number of the additional investi-

gated data points was low.

By using the proposed filtering conditions and correction a

regression function could be fitted with high confidence. The

zero runoff point of the regression function defines the initial

loss. The value of the initial loss was 1.05±0.064 mm with 95%

confidence level for the investigated combined sewer catchment

(Délpest Treatment Plant).

Direct correlation between the value of the initial loss and the

environmental temperature could not be found in the 1–28◦C

temperature range.
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