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Abstract

This paper presents a continuous analytical model for evaluating the static and dynamic response of tall buildings considering soil–

structure interaction. The structure is represented as a parallel coupling of a bending beam and a shear beam, connected by rigid 

horizontal links, and supported by translational and rotational springs that account for foundation flexibility. The governing equations 

are derived via Hamilton's principle, explicitly including both translational and rotational inertias. For buildings with uniform properties, 

closed-form solutions are obtained using the Laplace transform. To extend the formulation to non-uniform buildings, a modified 

transfer matrix method is introduced that avoids matrix inversion, thereby reducing computational cost. Parametric studies highlight 

the sensitivity of natural frequencies to soil flexibility and demonstrate the influence of rotational inertia on higher vibration modes, 

which is often neglected in previous studies. The formulation is restricted to the linear elastic range and does not incorporate second-

order (P–Δ) effects or material plasticity, thereby delineating its applicability to structures without significant geometric or material 

nonlinearities. Numerical comparisons with finite element results confirm the accuracy and efficiency of the proposed approach, 

providing a practical tool for the preliminary design and performance assessment of tall buildings on flexible foundations.
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1 Introduction
Contemporary finite element (FEM) software packages 
allow engineers to perform highly detailed and rigorous 
structural analyses of tall buildings. However, the use 
of refined meshes significantly increases the number of 
degrees of freedom, which in turn leads to high compu-
tational costs and potentially impractical runtimes, par-
ticularly during the preliminary design stage. In contrast, 
continuous analytical models, based on equivalent stiff-
ness parameters and generalized kinematic fields, offer a 
powerful alternative. Such models drastically reduce the 
dimensionality of the system while retaining the ability 
to capture the dominant global structural behaviors. This 
reduction not only enhances computational efficiency but 
also facilitates the identification and physical interpreta-
tion of the most influential structural mechanisms.

The use of continuous models to characterize the 
behavior of tall buildings dates back to the pioneering 
work of Jacobsen [1], who represented the supporting soil 

as a shear beam in the 1930s. Building upon this idea, 
Biot [2] extended the approach to investigate the seismic 
response of building structures. A major step forward was 
introduced by Chitty [3], who proposed a cantilever beam 
composed of parallel bending and shear beams intercon-
nected by rigid, axially inextensible links, thereby estab-
lishing a continuous model capable of representing both 
bending and shear deformations. This formulation was 
subsequently applied by Chitty and Wan [4] to the static 
analysis of tall buildings; however, axial deformations 
in vertical elements were neglected, which constitutes 
a significant limitation for tall building systems. In the 
decades that followed, numerous studies expanded these 
concepts to encompass a wide range of structural config-
urations and boundary conditions, including contributions 
by Skattum  [5], Rosman  [6,  7], Hegedűs and Kollár  [8], 
Miranda [9], Potzta and Kollár [10], Zalka [11], Bozdogan 
et al. [12], Bozdogan and Ozturk [13], Bozdogan [14, 15], 
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Catal  [16], Chesnais et  al.  [17], Zalka  [18], Capsoni and 
Moghadasi Faridani [19], Wang et al. [20], Laier [21], and 
Franco et al. [22].

Early analytical models were generally based on 
single-field formulations such as the classical Euler–
Bernoulli bending beam or the shear beam. These mod-
els were capable of capturing global bending and shear 
behavior but neglected axial deformations in verti-
cal members. Over time, two-field models gained wider 
acceptance. The  Timoshenko beam, which combines 
bending and shear effects in series, became a standard tool 
for capturing the interaction between bending and shear 
deformations. In parallel, sandwich beam formulations—
consisting of a Timoshenko beam coupled with a bend-
ing beam—were proposed to enrich the representation of 
deformation mechanisms. More recently, multi-field mod-
els have been introduced to further enhance accuracy. 
The generalized sandwich beam and its modified variants, 
for instance, explicitly account for local shear mechanisms 
in structural walls [17, 19]. Although often overlooked in 
earlier studies, these mechanisms have been shown to sig-
nificantly influence the dynamic response of tall buildings.

The study of soil–structure interaction (SSI) has 
been dominated by numerical approaches, including the 
finite element method, the finite difference method, and 
the boundary element method. While these techniques 
offer high fidelity, they require significant computational 
resources and are therefore less suitable for rapid pre-
liminary analyses. Continuous analytical models, on the 
other hand, have traditionally assumed rigid-base condi-
tions and have thus neglected foundation flexibility. Two 
main strategies are commonly used for SSI modeling: the 
direct method, in which the soil and the structure are mod-
eled as a unified finite element domain, and the substruc-
ture method, in which the soil–foundation system and the 
superstructure are treated as distinct but interacting sub-
systems. The substructure approach, adopted in this study, 
offers important advantages in terms of computational 
efficiency and has been shown to provide sufficient accu-
racy for engineering practice [23–25].

Several researchers have sought to integrate SSI effects 
into continuous formulations. Ambrosini  [23] developed 
a lumped-parameter model based on a generalized beam for-
mulation to investigate the role of soil damping in seismic 
response. Nakhaei and Ali Ghannad [24] conducted paramet-
ric studies on nonlinear single-degree-of-freedom systems, 
demonstrating the influence of soil–structure stiffness ratios 
on seismic damage indices. Medina et  al.  [25] developed 

methods to estimate natural periods and damping ratios for 
pile-supported shear buildings, explicitly accounting for 
SSI. Other studies incorporated SSI using Timoshenko beam 
formulations, including those by Cheng and Heaton  [26], 
Shirzad-Ghaleroudkhani et  al.  [27], Taciroglu et  al.  [28], 
Di  and Fu  [29], and Kara et  al.  [30]. Hybrid approaches 
have also emerged, such as optimization-based formulations 
aimed at reducing seismic demands [31], boundary-element/
continuous-beam couplings [32], Bayesian system identifi-
cation techniques [33, 34], and equivalent discrete–continu-
ous models for control systems [35–37]. Additional studies 
have examined higher-mode effects under SSI [38], seismic 
wave propagation effects  [39], and global buckling under 
soil flexibility [40]. Despite this extensive body of research, 
key limitations remain. Most classical continuous formu-
lations assume constant mechanical properties along the 
height of the building, thereby restricting their applicabil-
ity to realistic structures in which stiffness and mass vary 
with elevation. Similarly, foundation flexibility is often dis-
regarded, even though it substantially modifies both static 
and dynamic responses. Moreover, rotational inertia is usu-
ally neglected in analytical formulations, despite its growing 
influence on higher vibration modes.

Although several studies have advanced continu-
ous formulations in different directions—including 
soil–structure interaction (e.g., Ambrosini  [23]; Medina 
et  al.  [25]; Taciroglu et  al.  [28]), generalized continua 
and multi-field models for wall–frame systems (Chesnais 
et al. [17]; Capsoni and Moghadasi Faridani [19]), and the 
influence of rotational inertia on higher vibration modes 
(Tong and Christopoulos [38])—these contributions typ-
ically address these aspects in isolation. Only a limited 
number of works incorporate foundation flexibility, rota-
tional inertia, and height-varying properties simultane-
ously within a unified continuous beam analogy. This gap 
motivates the development of the present formulation, 
which integrates these effects in a consistent manner and 
provides a computationally efficient framework suitable 
for both uniform and non-uniform tall buildings.

In this study, a continuous model is developed based on 
the parallel coupling of a bending beam and a shear beam, 
which is extended to explicitly incorporate soil flexibility 
and rotational inertia. The governing equations, constitu-
tive relations, and boundary conditions are derived rigor-
ously using Hamilton's principle. Closed-form solutions 
are obtained for uniform buildings through the Laplace 
transform, while a modified transfer matrix method is 
introduced for non-uniform structures. This formulation 
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avoids matrix inversion, thereby improving computa-
tional efficiency. Parametric investigations are conducted 
to assess the influence of soil flexibility, stiffness distri-
bution, and rotational inertia on both static and dynamic 
responses. Comparisons with reference models and finite 
element simulations confirm the accuracy of the proposed 
formulation, demonstrating its potential as a practical tool 
for the preliminary design and assessment of tall buildings 
considering soil–structure interaction.

2 Continuous model: parallel coupling of a bending 
beam and a shear beam
The tall building is represented by a continuous model 
obtained from the parallel coupling of a bending beam 
(hereafter, EBB beam) and a shear beam (hereafter, SB 
beam). This formulation, originally proposed by Chitty [3] 
and Chitty and Wan [4], is herein referred to as the cou-
pled shear–bending beam (hereafter, CTB beam). The two 
beams are interconnected by rigid, axially inextensible 
horizontal links that transmit only horizontal forces with-
out undergoing deformation (Fig. 1).

The EBB beam is responsible for resisting bending 
deformations, whereas the SB beam resists shear deforma-
tions. By enforcing equal horizontal displacements through 
rigid connectors, the system combines the complementary 
deformation profiles of both components. Specifically, the 
EBB beam exhibits a deformation shape favorable to lat-
eral loading, with a maximum slope at the base, whereas 

the SB beam displays a profile with a maximum slope at the 
top. Their parallel coupling generates a hybrid deformation 
mode: bending-dominated in the lower stories—thereby 
limiting displacements near the base—and shear-dom-
inated in the upper stories—thereby reducing displace-
ments at the top. This interaction enhances the overall lat-
eral stiffness of the structure, often exceeding the sum of 
the individual stiffnesses of the two beams.

The CTB beam is described by a single transverse dis-
placement field, denoted as u(z), which is shared by both 
sub-beams through the rigid links. The bending and shear 
stiffnesses are denoted by Kb and Ks , respectively, and the 
total height of the building is denoted by H. Soil flexibil-
ity is modeled through translational and rotational springs 
characterized by stiffnesses KT and KR , respectively.

The following assumptions are adopted: 
1.	 structural elements behave in a linear elastic manner; 
2.	 diaphragms are considered rigid in their plane and 

transmit only horizontal forces; 
3.	 axial deformations in vertical elements are neglected; 
4.	 discrete shear forces transmitted by the connectors 

are modeled as a continuous shear flow at the mid-
plane of the connecting elements; 

5.	 the Bernoulli–Navier hypothesis applies to the con-
necting beams; 

6.	 second-order (P–Δ) effects are neglected; and 
7.	 connecting beams do not undergo axial deformations.

(a) (b)

Fig. 1 CTB beam with flexible base support: (a) uniform properties, (b) variable properties
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It should be noted that the formulation developed in 
this study is restricted to the linear elastic range and does 
not incorporate P–Δ effects or global instability phenom-
ena. Although these effects may become relevant in tall 
buildings subjected to severe seismic actions, their inclu-
sion would require extending the analysis to a geometri-
cally nonlinear framework, which lies beyond the scope 
of the present work. Consequently, the proposed model 

is applicable to structures in which lateral drifts remain 
moderate, a condition typically satisfied by buildings with 
sufficient lateral stiffness and moderate seismic demands.

3 Static analysis
3.1 Governing equations and boundary conditions
The strain energy of the CTB beam is expressed as: 
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The work done by an arbitrary distributed lateral force 
f(x) along the height is: 
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	 (2)

Therefore, the Lagrangian functional is expressed as: 
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According to Hamilton's principle: 

� �� ��� � � �� �W dt dt
t

t

t

t

1

2

1

2

0 	 (4)

Substituting Eq. (3) into Eq. (4) and integrating by parts 
yields the governing equilibrium equation: 

K u x K u x f xb s����� � � ��� � � � � � 0 	 (5)

Constitutive laws (moment and shear force): 

M x K u xb� � � ��� � 	 (6)

V x K u x K u xb s� � � � ���� � � �� � 	 (7)

Boundary conditions: 
•	 At the clamped end (base) 

u
V
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u

M
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0
0 	 (9)

•	 At the free end (top) 

M H� � � 0 	 (10)

V H� � � 0 	 (11)

It is worth noting that, since the static problem does 
not involve kinetic energy, the governing equation can be 
derived directly from the principle of minimum poten-
tial energy. The use of Hamilton's principle in Eq.  (4) is 
equivalent in this context and is retained solely for consis-
tency with the variational framework adopted later in the 
dynamic formulation.

3.2 Analytical and numerical formulation
To facilitate analysis, the governing equation is normal-
ized with respect to the dimensionless coordinate z = x/H: 
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The normalized internal forces are expressed as: 
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A key dimensionless parameter, denoted as the lateral 
stiffness ratio or coupling factor, is defined as: 

� � H
K
K
s
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	 (15)
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This ratio controls the relative contributions of shear 
and bending deformations. When α  →  0, the model 
reduces to a pure bending beam (EBB). When α → ∞, the 
model approaches pure shear (SB). Intermediate values 
capture the coupled behavior [9].

Substituting these definitions, the normalized govern-
ing equation becomes: 

����� � � ��� � � � �u z u z z� �2 	 (16)

Assuming that u(z) is defined for z  >  0, its Laplace 
transform is defined as: 
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Applying the Laplace transform to the governing equa-
tion yields: 
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The application of the Laplace transform allows the 
differential equation to be solved in a more convenient 
transformed domain. Subsequently, the inverse Laplace 
transform is applied to project the solution back into 

the original physical space. The contribution of the lat-
eral load f(z) is evaluated using the convolution theorem. 
Applying this procedure yields: 
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The internal forces are expressed as: 
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� � � 	 (22) The displacement and internal force vectors can then be 
assembled in compact matrix form: 
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or 
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where βT and βR are two additional parameters that repre-
sent the soil flexibility: 
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Applying the boundary conditions and solving yields: 
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Given u(0) and u'(0), the displacement and internal 
force fields are determined analytically. Furthermore, the 
transfer matrix is obtained directly: 

The relationship between displacement and internal 
force vectors across consecutive stories is expressed as: 
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where Fi is the lateral load vector applied at the i-th node.
The relationship between the force–displacement vec-

tors at the n-th and initial stories is established by multi-
plying the transfer matrices and incorporating the external 
force vector [12]: 
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i.e., 
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where [12–15] 
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In simplified form [12], and substituting the boundary 
conditions, the expression becomes: 
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0

0

N N N N
N N N N

u
u�

�

�
�
�
�
�

�

�

�
�
�
�
�

� �
�� �
��� �

� �

�

�

�
�
��

�

�
�
�
�

�

�

�
�
��

�

�
�
�
�

�

�

�
�
�

�
�
�

�

�
�
�u

u

f
f
f
f

R

T

0

0

2

2

1

2

3

4






��
�
�

  (35)

The displacement field is obtained by solving the result-
ing system of equations: 

Accordingly, a general analytical solution is developed 
for structures with both uniform and non-uniform properties 
along their height, subjected to arbitrary lateral loads and 
variable soil flexibility. The direct derivation of the transfer 
matrix eliminates the need to compute the inverse of sin-
gular matrices, thereby yielding significant computational 
efficiency—an aspect that is particularly advantageous for 
tall buildings with height-dependent characteristics.

4 Dynamic analysis
The objective is now to derive the equations of motion of the 
proposed continuous model, evaluate the influence of soil–
structure interaction and rotational inertia on the vibra-
tion characteristics of tall buildings, and establish a uni-
fied framework for computing natural frequencies, mode 
shapes, and modal responses under dynamic excitation.

4.1 Governing equations and boundary conditions
The strain energy of the CTB beam is expressed as: 

u h
u h

N
N

N
N

N
N

n n

n n

T R� �
� � �

�
�
�

��

�
�
�

��
� �

� �

�

1 1

1 4

2 1 2

1 3

2

2 1

2 4

,

,

,

,

,

,

� �

�� �

� �

T R

T R

N
N

N
N

N
N

N
2 2 2

2 3

2

3 1

3 4

2 3 2

3 3

2

4 1,

,

,

,

,

,

,
�

�

�

�
�
�
�
�

�




�
�
�
�
�

� �

�� �

�

�

�
�
�
�
�

�




�
�
�
�
�

�
�
�

�
�
�
�
�
�
�

�
�
�

�

N
N

N
f
f

f
f

T R

4 4

2 4 2

4 3

2

1

3

4

1

2,

,

,

� �

	 (36)

� � ��� ��� �� � �� ��� �� � � ��� �
1

2

1

2

1

2
0

2

0

2

0

K u x t dx K u x t dx K u tb

H

s

H

T, , ,�� �� � �� ��� ��
2 21

2
0K u tR , 	 (37)

The conventional coupling of bending and shear beams 
typically neglects rotational inertia. To explicitly include 
this effect, the total kinetic energy is modified as: 

T u x t u x t dxu

H

� � � � � � ��� ���
1

2

2 2

0

� �� , , 	 (38)

where � �u i
i

n

A�
�
�

1
 and � �� �

�
� Ii
i

n

1
 denote the translational 

and rotational mass per unit length, respectively. The prime 

� ��  and dot � �
�

 operators represent spatial and temporal 
derivatives, respectively.

Therefore, the Lagrangian functional is expressed as: 

� � ��� ��� �� � �� ��� �� � � ��� �
1

2

1

2

1

2
0

2

0

2

0

K u x t dx K u x t dx K u tb

H

s

H

T, , ,�� �� � �� ��� �� � � � � � � ��� ���
2 2

2 2

0

1

2
0

1

2
K u t u x t u x t dxR u

H

, , ,� ��  	 (39)

and Hamilton's principle requires: 

� �� �� �� � � �� �T W dt dt
t

t

t

t

1

2

1

2

0 	 (40)

After substitution and integration by parts, the govern-
ing equation of motion becomes: 

� ��u b su x t u x t K u x t K u x t , , , ,� � � ��� � � ����� � � ��� � � 0 	 (41)

Boundary conditions: 
•	 At the clamped end (base) 

u t
V t
KT

0
0

,
,

� � � � � 	 (42)

�� � � � �
u t

M t
KR

0
0

,
,

	 (43)



8|Pinto-Cruz
Period. Polytech. Civ. Eng.

•	 At the free end (top) 

M H t,� � � 0 	 (44)

V H t,� � � 0 	 (45)

A separation of variables is assumed: 

u x t x q t,� � � � � � �� 	 (46)

where ϕ(z) is the spatial mode shape and q(t) the general-
ized coordinate. Substituting Eq. (46) into Eq. (41) yields: 

q t
K x K x

x x
q tb s

u

� � �
����� � � ��� �
� � � ��� �

�

�
�
�

�

�
�
�
� � �

� �
� � � ��

0 	 (47)

Since time and spatial coordinates are independent, each 
term must equal a constant with opposite signs to satisfy 
the identity. This leads to the decomposition of the govern-
ing equation into two ordinary differential equations.

q t q t� � � � � �� 2
0 	 (48)

K x K x xb s u����� � � �� � ��� � � � � �� � � � � � ��
2 2

0 	 (49)

The first equation corresponds to the equation of motion 
of a single-degree-of-freedom (SDOF) system with natu-
ral frequency ω. 

The normalized internal forces are expressed as: 

M z H
K
M z z

b

* � � � � � � ��� �
2

� 	 (50)

V z H
K
V z z z

b

* � � � � � � � ���� � � �� �
3

2� � � 	 (51)

Three dimensionless parameters are introduced: 

� � H
K
K
s

b

	 (52)

�
�

�� u

b

H
K

4

2 	 (53)

�
�
�
��

1
H u

	 (54)

Normalizing with z = x/H: 

����� � � �� � ��� � � � � �� � � � � � �z z z2 2 2 2
0 	 (55)

Assuming that ϕ(z) is defined for z  >  0, its Laplace 
transform is defined as: 

� s L z z e dzsz� � � � ��� �� � � � �
�

�� �
0

	 (56)

Applying the Laplace transform to the governing equa-
tion yields: 

� s
s s

s s
s

s s
� � �

� �� ��� ��
�� � �� � � � � �

�� � �

2 2 2 2

2 2 2 2

2 2 2

2 2 2
0

� � �

� �
�

� �
� ��

�
� � � �2 2 2 2 2 2 2 2 2

0 0
1

0

� �
�� � �

�� � �� � � � �
�� � �� � � �s

s s
M

s s
V* *   (57)

where 

�
� � � � � � �

�
�� � � �� � �2 2 2 2 2 2

2
2

4

2
	 (58)

�
� � � � � � �

�
� �� � � �� � �2 2 2 2 2 2

2
2

4

2

	 (59)

The displacements and internal forces are obtained by 
solving the Laplace-transformed differential equation and 
subsequently applying the inverse Laplace transform.

�
� � � � � � � � � �

� �
z

z z
� � �

� �� ��� �� � � � � �� ��� �� � �
�

2 2 2 2 2 2 2 2

2 2

cosh cos��
�
�


�

�
�
�


�
� �

�
�� � � �

� �� � � �

�

�

�
�

�

� � �
�

�
� � �

�
�

� �

0

2 2 2 2

2 2

sinh sinz z
��



�
�

�

�
��



�
�

	� � � � � � � �
�

�

�
�

�

�
� � � �

�
�

� �
� �

�

0 0
2 2

cosh cos

sinh

*
z z

M

z�� �
�

� �

�

�

�

�
�
�
�

�

�

�
�
�
�

� ��
�
�

� �

sin

*

z

V
2 2

0

 (60)
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�� � �
� �� ��� �� � � � � �� ��� �� � �

�
� � � � � � � � � � � �

�
z

z z2 2 2 2 2 2 2 2

2

sinh sin

��

�
�



�


�





	

� �

�
�� � � � � �� � � �

�

�
�

�
�

� � � � � � � �

� �

2

2 2 2 2

2 2

0

cosh cosz z



�


�





	

�� � � � � � � �

�
�

�
�

�

�
� � � �

� �
�

� � � �
� �

�
0 0

2 2

sinh sin coshz z
M

z
*

�� � � �
�

�

�
�

�

�
� � �

cos �
� �

z
V

2 2
0

*

	

(61)

M z
z z

* � � �
� �� ��� �� � � � � �� ��� �� � �� � � � � � � � � � � �2 2 2 2 2 2 2 2 2 2

cosh cos

�� �
�

� � � � � � � � � �

�

2 2

2 2 2 2

2

0
�

�
�
�


�

�
�
�


�
� �

�
�� � � � � �� � � �

�

sinh sinz z

��
�

� � � �
� �2

2 2

2 2
0 0

�
�
�


�

�
�
�


�
	� � � � � � � �

�

�

�
�
�

�

�
�
�

� �

�

cosh cosz z
M *

�� � � � � �
�

�

�
�

�

�
� � �

� � � �
� �

sinh sinz z
V

2 2
0

*

	 (62)

V z
z

* � � �
� � �� ��� �� �� � � � � � �� ��� ��� � � � � � � � � � � � � �2 2 2 2 2 2 2 2 2 2

sinh
22 2

2 2

2 2 2 2

0

�� � � �
�

�
�
�

��



�
�

��
� �

�
� �� � �� � � �

� �

� �



� � � � � �

sin

cosh

z

z �� �� � �� � � �
�

�
�
�

��



�
�

��
	� �

�
� �� �

� � � � � �

� �



� � �

2 2 2 2

2 2

2 2

0

cos

sinh

z

�� � � � �

� �

� � � �z z
M

z� � � �� � � �
�

�

�
�
�

�

�
�
�

� � �
�� � � � �2 2

2 2

2 2 2

0

sin cosh
*

��� � � �
�

�

�
�
�

�

�
�
�

� �
� �

� �

2

2 2
0

cos z
V *

	 (63)

The displacement and internal force vectors can then be 
assembled in compact matrix form: 

�
�
z
z

M z
V z

M z M z M z M� �
�� �
� �
� �

�

�
�
�

�
�
�

�

�
�
�

�
�
�

�

� � � � � �

*

*

, , , ,1 1 1 2 1 3 1 44

2 1 2 2 2 3 2 4

3 1 3 2 3 3 3 4

z
M z M z M z M z
M z M z M z M

� �
� � � � � � � �
� � � � � �

, , , ,

, , , ,
zz

M z M z M z M z
M� �

� � � � � � � �

�

�

�
�
�
�
�

�

�

�
�
�
�
�

� �
�� �

4 1 4 2 4 3 4 4

0

0

0

, , , ,

*

�
�

�� �
� �

�

�
�
�

�
�
�

�

�
�
�

�
�
�V * 0

	 (64)

i.e., 

�
�
z
z

M z
V z

M z M z M z M� �
�� �
� �
� �

�

�
�
�

�
�
�

�

�
�
�

�
�
�

�

� � � � � �

*

*

, , , ,1 1 1 2 1 3 1 44

2 1 2 2 2 3 2 4

3 1 3 2 3 3 3 4

z
M z M z M z M z
M z M z M z M

� �
� � � � � � � �
� � � � � �

, , , ,

, , , ,
zz

M z M z M z M z
� �

� � � � � � � �

�

�

�
�
�
�
�

�

�

�
�
�
�
�

� �
�� �
�

4 1 4 2 4 3 4 4

0

0

0
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�
�
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� �

�

�

�
�
��

�

�
�
�
�

�

�

�
�
��

�

�
�
�
�




�



R

T

2

2

0

	 (65)

Applying the boundary conditions yields: 

M
M

M
M

M
M

M

T R

T

3 1

3 4

2 3 2

3 3

2

4 1

4 4

2 4 2

1
1

1
1

1
1

,

,

,

,

,

,

,

� � � � � � � � � �

� � � � �
� �

�
11

1

0

0
4 3

2
� � � � �

�

�

�
�
�
�
�

�

�

�
�
�
�
�

� �
�� �

�
�
�

��

�
�
�

��


�
�
�

�
�
�M

z
z

R

,

�

�
�

	 (66)
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A non-trivial solution exists when the determi-
nant of the coefficient matrix equals zero, indicating its 

singularity. After straightforward manipulations, this 
determinant can be expressed as: 

M M M M M M MT R3 1 4 2 3 2 4 1

2 2

3 1 4 3 3
1 1 1 1 1 1

, , , , , , ,� � � � � � � � ��� �� � � � � � �� �
33 4 1

2

3 4 4 2 3 2 4 4

2

1 1

1 1 1 1

� � � ��� ��
� � � � � � � � � ��� �� �

M

M M M M M
T

R

,

, , , ,

�

�
33 4 4 3 3 3 4 4
1 1 1 1 0

, , , ,� � � � � � � � ��� �� �M M M
	 (67)

Solving the determinant yields the eigenvalues δ, which 
in turn allow for the calculation of the vibration periods: 

T H
r Kf

u

b

�
2 2�

�
� 	 (68)

where rf is a correction factor introduced to account for 
vertical loads applied at discrete floor levels rather than 
uniformly distributed along the building height [18], and 
N denotes the number of stories.

r N
Nf � � 2 06.

	 (69)

The transfer matrix is obtained as: 

M z

M z M z M z M z
M z M z M z M

� � �

� � � � � � � �
� � � � � �

1 1 1 2 1 3 1 4

2 1 2 2 2 3 2 4

, , , ,

, , , ,
zz

M z M z M z M z
M z M z M z M z

� �
� � � � � � � �
� � � � � �

3 1 3 2 3 3 3 4

4 1 4 2 4 3 4 4

, , , ,

, , , , �� �

�

�

�
�
�
�
�

�

�

�
�
�
�
�

	 (70)

The relationship between displacement and internal 
force vectors across consecutive stories is expressed as: 

�
�

�
��

�

�
�
�

�
�
�

�

�
�
�

�
�
�

�
�

�

�
�
�

�
�
�

�

�
�
�

�
�
�

�

M
V

M
M
Vi

i

i

*

*

*

*

1

	 (71)

The relation between forces and displacements of the 
n-th element and the initial element is established by apply-
ing the product of transfer matrices of the n elements [12]: 

u h
u h
M h
V h

M

u
u

n n

n n

n n

n n n

k
k n

� �
� � �
� �
� �

�

�
�
�

�
�
�

�

�
�
�

�
�
�

�

� �
��

�
�*

*

1

0

0��
� �
� �

�

�
�
�

�
�
�

�

�
�
�

�
�
�

�

� �
�� �
� �
� �

�

�
�
�

�
�
�

�

�
�

M
V

N

u
u
M
V

*

*

*

*

0

0

0

0

0

0
1

��

�
�
�
1

	 (72)

where [12] 

N M�
�
� k
k n

1
	 (73)

Expressed in simplified form [12] is: 

�
�
n n

n n

n n

n n

h
h

M h
V h

N N N N� �
� � �
� �
� �

�

�
�
�

�
�
�

�

�
�
�

�
�
�

�
*

*

, , , ,1 1 1 2 1 3 1 4

NN N N N
N N N N
N N N N

2 1 2 2 2 3 2 4

3 1 3 2 3 3 3 4

4 1 4 2 4 3 4 4

, , , ,

, , , ,

, , , ,

�

�

�
�
�
�
�

�

�

��
�
�
�
�

� �
�� �
� �
� �

�

�
�
�

�
�
�

�

�
�
�

�
�
�

�
�
1

1

1

1

0

0

0

0

M
V

*

*

	 (74)

Applying the boundary conditions yields: 

N
N

N
N

N
N

N
N

T R

T R

3 1

3 4

2 3 2

3 3

2

4 1

4 4

2 4 2

4 3

2

,

,

,

,

,

,

,

,

� �

� �

�

�

�
�
�
�
�

�

�

�� �

� �

��
�
�
�

� �
�� �

�
�
�

��

�
�
�

��


�
�
�

�
�
�

�
�
z
z

0

0
	 (75)

A non-trivial solution exists when the determinant of 
the coefficient matrix vanishes, indicating singularity. 
The determinant can be expressed as: 

N N N N N N NT R3 1 4 2 3 2 4 1

2 2

3 1 4 3 3
1 1 1 1 1 1

, , , , , , ,� � � � � � � � ��� �� � � � � � �� �
33 4 1

2

3 4 4 2 3 2 4 4

2

1 1

1 1 1 1

� � � ��� ��
� � � � � � � � � ��� �� �

N

N N N N N
T

R

,

, , , ,

�

�
33 4 4 3 3 3 4 4
1 1 1 1 0

, , , ,� � � � � � � � ��� �� �N N N
	 (76)

Solving the determinant yields the eigenvalues δ, which 
enable the determination of the vibration periods.

4.2 Special base constraints
4.2.1 Fully fixed: βR

2 → 0, βT
2 → 0

In this scenario, the lateral and rotational stiffnesses at 
the base approach infinity (KT → ∞, KR → ∞) preventing 

base displacements—a typical condition for conventional 
buildings. The characteristic equation for calculating the 
eigenvalue γ is: 

N N N N
3 4 4 3 3 3 4 4
1 1 1 1 0

, , , ,� � � � � � � � � � 	 (77)

i.e., 

� � � � � � � � � � � �

� � �

sinh sin sinh sin

cosh co

�� � � �� � � �� ��� ��

� �

2 2 2 2

2 2
ss cosh cos� � � � � � �� � �� � � �� ��� �� �

2 2 2 2
0

	 (78)
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4.2.2 Rotationally flexible and translationally fixed: 
βR

2 ≠ 0, βT
2 → 0

In this case, only the lateral stiffness at the base tends to 
infinity (KT → ∞), preventing translational displacement at 

the base. The characteristic equation for determining the 
eigenvalue δ is:

N N N N N N NR3 4 4 2 3 2 4 4

2

3 4 4 3 3 3
1 1 1 1 1 1 1

, , , , , , ,� � � � � � � � ��� �� � � � � � � �� �� � ��� �� �N
4 4
1 0

,
	 (79)

i.e., 

� �� � � �� � �� � � �� � �� �� � � � � � � � � � � � � � � �sinh sin cosh cos
2 2 2 2 2 2 2 2 2 2�� ��

�

� �� � � �� �� � �� � � �� �� � � � � � � � � � � � � � �2 2 2 2 2 2 2 2 2 2
sinh sin cosh ccos

sinh sin sinh sin

� �

� � � � � � � � � � � �

� ���

�
� �� � � �� � � �� �� �
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4.2.3 Rotationally free and translationally fixed: 
βR

2 → ∞, βT
2 → 0

This case corresponds to a pinned base condition where 
KR → 0 and KT → ∞. The characteristic equation for deter-
mining the eigenvalue δ is: 

N N N N
3 4 4 2 3 2 4 4
1 1 1 1 0

, , , ,� � � � � � � � � � 	 (81)

i.e., 

� � � � � � � � � � � � � � � �sinh sin cosh cos�� � � �� � �� � � �� � �� �� 2 2 2 2 2 2 2 2 2 2

�� ��

� �� � � �� ��� �� �� � � ��� � � � � � � � � � � � � � �2 2 2 2 2 2 2 2 2 2
sinh sin cosh ���� �� �cos� 0

	 (82)

4.2.4 Rotationally fixed and translationally free: 
βR

2 → 0, βT
2 → ∞

A notable special case is that of isolated-base buildings 
where KR → ∞, KT → 0. In this condition, lateral displace-
ment is permitted while rotational displacement is fully 

restrained. The characteristic equation for calculating the 
eigenvalue δ is:

N N N N
3 1 4 3 3 3 4 1
1 1 1 1 0

, , , ,� � � � � � � � � � 	 (83)

i.e., 
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�
� �sinh sin� � � � � � � � �2 2 2 2 2 2
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	 (84)

The boundary conditions considered in Sections 4.2.3 
and  4.2.4, despite leading to configurations that resem-
ble inverted-pendulum mechanisms, are included because 
they represent fundamental limiting cases within the full 
range of base stiffness conditions. Releasing either rota-
tion or translation at the base introduces additional global 
degrees of freedom and shifts the deformation mechanism 
from bending-dominated to rotation-dominated behavior. 
These extreme scenarios are not intended to model com-
mon building configurations, but rather to complete the 
analytical characterization of the proposed formulation, 

to illustrate its behavior in boundary-condition limits, and 
to provide insight into situations relevant for highly flexi-
ble foundations, base-isolation systems, or structures with 
significant soil–structure interaction.

4.3 Modal properties
4.3.1 Orthogonality of vibration modes
To prove the orthogonality of the modes, the differential 
equation is considered for a generic vibration mode  r. 
The Eq. (55) is multiplied by ϕs(z) and integrated over the 
normalized height of the continuous model. 
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���� � � � � � ��� � � ��� �� � � ��� � � � �� � � � � � � � � �r s r s r r sz z z z dz z z2

0

1

2 2 �� �r sz z dz� � � ��� ���
0

1
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Integrating by parts and applying the boundary condi-
tions yields: 

Substituting the boundary conditions and perform-
ing subtraction yields the expression demonstrating the 
orthogonality of the vibration modes: 

� � � � � � �r s r s r sz z z z dz2 2 2

0

1

0�� � � � � � � � � � � � ��� �� �� 	 (88)

4.3.2 Modal analysis of forced dynamic response to 
ground motion
Displacements in each mode are expressed in terms of 
generalized coordinates as follows: 

u z t z q tr
r

,� � � � � � �
�

�

��
1

	 (89)

Thus, the response of the eigenvectors is expressed as a 
superposition of individual vibration modes. The coupled 
differential equation for the r-th mode is rewritten as: 
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0

1
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Similarly, considering another generic vibration 
mode s, Eq. (55) is multiplied by ϕr(z) and integrated over 
the beam height.
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Multiplying Eq.  (90) by ϕs(z) and integrating over the 
beam height yields: 

Due to the orthogonality of the mode shapes, the off- 
diagonal terms for r ≠ s vanish. Considering the diagonal 

terms corresponding to r  =  s, the following expression 
is obtained: 
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Reorganizing terms yields the standard single- 
degree-of-freedom (SDOF) equation in the form: 

q t q t
f z t z dz
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For seismic excitation, the external force term is 
replaced by the effective inertia force: f(z,t)  =  −γuüg(t). 
Then Eq. (93) becomes: 
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i.e., 

 q t q t u tg� � � � � � � � �� 2 � 	 (95)

The modal parameters are defined as follows: 
•	 Modal earthquake excitation factor: 

L z dzu� � ��� �
0

1

	 (96)

•	 Generalized modal mass: 

M z z dzu� � � � � � ��� ���� � � �2 2 2

0
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	 (97)

•	 Modal participation factor: 
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Assuming q(t) = ΓD(t), the dynamic equation reduces to: 



D t D t u tg� � � � � � � � �� 2 	 (99)

This corresponds to the motion equation of an equiva-
lent SDOF system subjected to ground acceleration üg(t).

4.3.3 Effective modal mass
The normalized effective modal mass is defined by: 
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4.3.4 Displacements
The displacement D(t) is related to the pseudo-acceleration 
A(t) by: 
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The modal displacement u(z,t) is given by: 
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(102)

The maximum absolute value of u(z,t) is: 

u
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where Sa(T) is the elastic pseudo-spectral acceleration for 
an SDOF oscillator with period T.

The corresponding normalized expression is: 
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Additionally, the term Γϕ(z) can be rewritten as: 
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4.3.5 Story drift ratios
The maximum value of the drift is obtained as: 
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The normalized form becomes: 
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4.3.6 Overturning moments
The modal contribution to the overturning moment is 
expressed as: 
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or 
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The maximum value is: 
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normalized as: 
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4.3.7 Shear forces
The modal shear force is given by: 
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Fig. 2 Lateral displacement and Interstory drift profiles for α = 0.3, representing a bending-dominated structural response

Substituting modal displacements leads to: 

V z t
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The maximum shear force is: 
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normalized as:
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5 Numerical investigations
5.1 Verification and validation for the fixed-base case
To verify the proposed analytical framework, its results are 
benchmarked against those obtained from Miranda's  [9] 
parallel coupling model for bending and shear beams. 
The  reference model adopted for comparison assumes 
a fixed-base condition and neglects rotational inertia. 
The validation is then followed by a parametric investiga-
tion of soil–structure interaction effects under four bound-
ary conditions: fixed (KT → ∞, KR → ∞), pinned (KT → ∞, 
KR → 0), isolated (KT → 0, KR → ∞), and free (KT → 0, 
KR → 0).

5.1.1 Static analysis
To evaluate the accuracy of the proposed solution for static 
analysis, Figs.  2–7 present the lateral displacement and 
interstory drift profiles for four distinct lateral load dis-
tributions governed by the dimensionless parameter a [9]:

f z W e
e

az

a� � � �
�

�

�max

1

1

	 (117)

where Wmax denotes the peak intensity of the distributed 
load at the top, and a is a dimensionless parameter gov-
erning the shape of the lateral load distribution [9]. 

The analysis considers three structural systems char-
acterized by α  =  0.3, indicative of a bending-dominated 
response; α  =  3, representing an intermediate coupling 
between bending and shear effects; and α  =  15, corre-
sponding to a shear-dominated behavior. Notably, the pro-
posed model exhibits excellent agreement with the refer-
ence solution developed by Miranda [9].

For simplicity, Figs. 2–4 use the normalized displace-
ment ũ(z) and ũ'(z), defined as: 

u z u z
W K
H

b� � � � � max

4
	 (118)

�� � � �� �u z u z
W K
H

bmax

3
	 (119)

The lateral displacement and interstory drift profiles 
are presented for the fixed-base condition (Fig. 5), pinned-
base condition (Fig.  6), isolated-base condition (Fig.  7), 
and free-base condition (Fig.  8), thereby capturing the 
influence of soil flexibility on the structural response.
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Fig. 3 Lateral displacement and Interstory drift profiles for α = 3, representing intermediate coupling between bending and shear behavior

Fig. 4 Lateral displacement and Interstory drift profiles for α = 15, representing a shear-dominated structural response

Fig. 5 Fixed-base condition: Lateral displacement and Interstory drift profiles for α = 0.3, α = 3 and α = 15

In Figs. 7 and 8, the extremely large abscissa values (on 
the order of 106) correspond to the limiting case of vanish-
ing translational stiffness at the base. Because the horizontal 
axis is expressed in terms of compliance—or, equivalently, 

in a normalized form involving the inverse of the transla-
tional spring stiffness—the corresponding values become 
very large as the base stiffness approaches zero. This 
behavior does not imply infinite translation of the building; 
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Fig. 6 Pinned-base condition: Lateral displacement and Interstory drift profiles for α = 0.3, α = 3 and α = 15

Fig. 7 Isolated-base condition: Lateral displacement and Interstory drift profiles for α = 0.3, α = 3 and α = 15

Fig. 8 Free-base condition: Lateral displacement and Interstory drift profiles for α = 0.3, α = 3 and α = 15

rather, it reflects the theoretical boundary condition of a 
fully free or nearly free base. These cases are included to 
illustrate the asymptotic behavior of the proposed formu-
lation and to complete the parametric spectrum between 
perfectly fixed and fully flexible foundations.

5.1.2 Dynamic analysis
To evaluate the accuracy of the proposed solution for 
dynamic analysis, Fig. 9 presents the computed eigenval-
ues corresponding to the first five vibration modes while 
neglecting rotational inertia effects. The analysis spans 
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a broad range of structural configurations by varying the 
parameter α from 0, representing pure bending behavior, 
to 15, indicative of a shear-dominated response.

The results demonstrate a high degree of consistency 
between the proposed solution and the reference solution 
developed by Miranda  [9], thereby confirming the accu-
racy of the analytical approach.

The 25-story SE Executive Tower (Fig. 10), previously 
analyzed by Huergo and Hernández [35], is employed as 
a benchmark to compare the dynamic response of a struc-
ture founded on rigid soil. The objective is to evaluate 
the accuracy of the proposed formulation in estimating 
the fundamental vibration periods. The relevant struc-
tural parameters are as follows: total height H = 93.65 m; 
distributed mass γu  =  112500  kg/m; bending stiffnesses 
Kbx = 2.0637 × 109 kN m2 and Kby = 5.1913 × 108 kN m2; 
and shear stiffnesses Ksx  =  2.1178  ×  106  kN and 
Kby  =  2.5008  ×  106  kN. The first three natural periods 
computed using the proposed model are compared with 
those reported in [35].

Table 1 presents the first three natural vibration peri-
ods of the SE Executive Tower in the x- and y-directions 
under a fixed-base condition. The results show excellent 
agreement between the proposed analytical solutions and 
those obtained from finite element simulations performed 
using SAP2000 [41].

Subsequently, a parametric analysis is conducted to 
compute the eigenvalues corresponding to the first five 
vibration modes by varying the parameter α under four 
boundary conditions: fixed base, pinned base, isolated base, 
and free base. The influence of soil flexibility is explicitly 
accounted for in all cases, as illustrated in Figs. 11–15.

5.1.3 Influence of rotational inertia on the eigenvalue γ
The classical model developed by Miranda  [9] neglects 
rotational inertia in the dynamic formulation. To assess the 
implications of this assumption, the influence of explicitly 
incorporating rotational inertia on the first three vibra-
tion modes is examined under four boundary conditions: 
fixed, pinned, isolated, and free. The comparative results 
are presented in Figs. 16–19. The effect of rotational iner-
tia is found to be nearly negligible for the fundamental 
vibration mode, which explains its widespread omission 
in the existing literature. However, for higher modes, its 
influence becomes significant and increases with both the 
mode number and the dimensionless parameter α, particu-
larly in shear-dominated configurations.

The influence of rotational inertia is generally negligi-
ble for the fundamental mode of tall buildings whose lat-
eral response is dominated by bending and whose mass 
distribution varies smoothly along the height. However, 

Fig. 9 Fixed-base condition (μ = 0): (a) Eigenvalue γ, (b) Eigenvalue β 
and (c) Eigenvalue ξ for the first five vibration modes

(a)

(b)

(c)
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its contribution becomes significant in several practical 
situations, including structures dominated by shear defor-
mation, such as buildings with slender structural walls or 
closely spaced coupling beams; systems with relatively low 
bending stiffness compared with shear stiffness, in which 
higher modes exhibit increased curvature concentration; 

Table 1 First three periods of the SE Executive Tower with fixed-base 
support

Mode
X-direction Y-direction

FEM (s) CM (s) Error FEM (s) CM (s) Error

1 1.871 1.859 −0.66% 2.089 2.095 0.32%

2 0.470 0.464 −1.19% 0.617 0.62 0.54%

3 0.194 0.192 −1.22% 0.301 0.308 2.30%

Fig. 11 First vibration mode for μ = 0: (a) Eigenvalue γ, (b) Eigenvalue β 
and (c) Eigenvalue ξ under varying base conditions

(a)

(b)

(c)Fig. 10 SE Executive Tower with fixed-base support: (a) General view 
of the building and (b) Finite element model (FEM) representation

(a)

(b)
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Fig. 12 Second vibration mode for μ = 0: (a) Eigenvalue γ, 
(b) Eigenvalue β and (c) Eigenvalue ξ under varying base conditions

(a)

(b)

(c)

Fig. 13 Third vibration mode for μ = 0: (a) Eigenvalue γ, 
(b) Eigenvalue β and (c) Eigenvalue ξ under varying base conditions

(a)

(b)

(c)

buildings supported on flexible foundations, base-iso-
lated systems, or soil–structure interaction conditions that 
amplify the contribution of higher vibration modes; and 
configurations in which the upper modes develop substan-
tial rotation gradients. In such cases, neglecting rotational 

inertia may lead to an underestimation of higher-mode fre-
quencies and an inaccurate representation of mode shapes. 
The proposed formulation overcomes these limitations by 
explicitly incorporating rotational inertia in both the static 
and dynamic analyses.
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Fig. 14 Fourth vibration mode for μ = 0: (a) Eigenvalue γ, 
(b) Eigenvalue β and (c) Eigenvalue ξ under varying base conditions

(a)

(b)

(c)

Fig. 15 Fifth vibration mode for μ = 0: (a) Eigenvalue γ, (b) Eigenvalue β 
and (c) Eigenvalue ξ under varying base conditions

(a)

(b)

(c)

5.1.4 Parametric analysis considering soil flexibility
To validate the applicability of the proposed solution in the 
limiting cases of bending- and shear-dominated behavior, 
the influence of soil flexibility on the eigenvalue associated 
with the vibration period is examined. For this purpose, 
a comprehensive parametric study is conducted, comprising 

91  simulations for each limiting case. To  encompass the 
full spectrum of possible soil conditions, the dimensionless 
parameters governing translational and rotational soil flex-
ibility are varied over the wide ranges βT

2 = 10−7 − 107 and 
βR

2 = 10−7 − 107, thereby covering all boundary conditions 
from fully free to fully fixed bases.



Pinto-Cruz
Period. Polytech. Civ. Eng.|21

Fig. 20 presents the eigenvalue results for the case α = 0, 
corresponding to a purely bending response, in compari-
son with exact solutions obtained from a classical bending 
beam model. An excellent agreement is observed over the 
entire range of soil flexibility.

Similarly, Fig.  21 presents the eigenvalue results for 
the case α = 27.5, representative of an approximately pure 
shear response. These results are compared with exact 
solutions derived from a shear-dominated beam model, 
revealing excellent agreement, particularly for scenarios 
characterized by high soil flexibility.

Fig. 16 Fixed-base condition: Influence of rotational inertia (μ) on the 
eigenvalue γ for the first, second, and third vibration modes

(a)

(b)

(c)

Fig. 17 Pinned-base condition: Influence of rotational inertia (μ) on the 
eigenvalue γ for the first, second, and third vibration modes

(a)

(b)

(c)
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6 Conclusions and future work
The main contributions and findings of this study are sum-
marized as follows:

•	 A continuous analytical model for tall buildings is 
developed based on the parallel coupling of a bend-
ing beam and a shear beam, extending classical 

formulations by explicitly incorporating foundation 
flexibility and rotational inertia.

•	 The governing equations and boundary conditions 
are rigorously derived within a variational frame-
work. Closed-form solutions are obtained for uni-
form buildings via the Laplace transform, and 

Fig. 18 Isolated-base condition: Influence of rotational inertia (μ) on 
the eigenvalue γ for the first, second, and third vibration modes

(a)

(b)

(c)

Fig. 19 Free-base condition: Influence of rotational inertia (μ) on the 
eigenvalue γ for the first, second, and third vibration modes

(a)

(b)

(c)
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a modified transfer matrix method is introduced for 
non-uniform systems, avoiding matrix inversion and 
improving computational efficiency.

•	 The model captures bending-dominated, shear-dom-
inated, and coupled responses by varying the relative 

magnitudes of bending and shear stiffnesses, and it 
accommodates arbitrary lateral load distributions.

•	 Rotational inertia—often neglected in previous con-
tinuous models—is shown to have a negligible influ-
ence on the fundamental mode but a significant effect 

Fig. 20 Comparison of eigenvalues for the pure bending case (α = 0) 
with μ = 0, corresponding to the (a) first, (b) second, and (c) third 

vibration modes

(a)

(b)

(c)

Fig. 21 Comparison of eigenvalues for the pure shear case (α = 27.5) 
with μ = 0, corresponding to the (a) first, (b) second, and (c) third 

vibration modes

(a)

(b)

(c)



24|Pinto-Cruz
Period. Polytech. Civ. Eng.

on higher modes, especially in shear-dominated con-
figurations and under flexible-base conditions.

•	 Validation against Miranda's  [9] fixed-base contin-
uous bending–shear model and finite element simu-
lations demonstrates strong agreement across bend-
ing- and shear-dominated regimes. A comprehensive 
parametric study covering more than 182 cases con-
firms the robustness and accuracy of the proposed for-
mulation under varying soil–structure stiffness ratios.

•	 The model provides a practical and computationally 
efficient tool for preliminary design and sensitivity 
analyses of tall buildings, enabling the inclusion of 
soil–structure interaction and higher-mode effects 
without the computational demands of detailed finite 
element models.

It is important to note that the proposed model does not 
account for second-order (P–Δ) effects or stiffness reduc-
tions associated with geometric instability. Consequently, 
its applicability is restricted to structures that remain 
within the linear elastic range and whose lateral displace-
ments do not induce significant second-order amplifica-
tion. Under these conditions, the formulation is suitable for 
tall buildings with adequate lateral stiffness and seismic 
acceleration levels that do not produce excessive drifts.

Future extensions of the model may include the incor-
poration of second-order (P–Δ) effects and geometric-stiff-
ness degradation; nonlinear soil–structure interaction, 
including hysteretic and radiation damping mechanisms; 
advanced damping models and energy-dissipation mech-
anisms; and application of the formulation to perfor-
mance-based seismic design of tall buildings and systems 
with base isolation or highly flexible foundations.
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