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Abstract

This paper presents a continuous analytical model for evaluating the static and dynamic response of tall buildings considering soil-
structure interaction. The structure is represented as a parallel coupling of a bending beam and a shear beam, connected by rigid
horizontal links, and supported by translational and rotational springs that account for foundation flexibility. The governing equations
are derived via Hamilton's principle, explicitly including both translational and rotational inertias. For buildings with uniform properties,
closed-form solutions are obtained using the Laplace transform. To extend the formulation to non-uniform buildings, a modified
transfer matrix method is introduced that avoids matrix inversion, thereby reducing computational cost. Parametric studies highlight
the sensitivity of natural frequencies to soil flexibility and demonstrate the influence of rotational inertia on higher vibration modes,
which is often neglected in previous studies. The formulation is restricted to the linear elastic range and does not incorporate second-
order (P-A) effects or material plasticity, thereby delineating its applicability to structures without significant geometric or material

nonlinearities. Numerical comparisons with finite element results confirm the accuracy and efficiency of the proposed approach,

providing a practical tool for the preliminary design and performance assessment of tall buildings on flexible foundations.
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1 Introduction
Contemporary finite element (FEM) software packages
allow engineers to perform highly detailed and rigorous
structural analyses of tall buildings. However, the use
of refined meshes significantly increases the number of
degrees of freedom, which in turn leads to high compu-
tational costs and potentially impractical runtimes, par-
ticularly during the preliminary design stage. In contrast,
continuous analytical models, based on equivalent stiff-
ness parameters and generalized kinematic fields, offer a
powerful alternative. Such models drastically reduce the
dimensionality of the system while retaining the ability
to capture the dominant global structural behaviors. This
reduction not only enhances computational efficiency but
also facilitates the identification and physical interpreta-
tion of the most influential structural mechanisms.

The use of continuous models to characterize the
behavior of tall buildings dates back to the pioneering
work of Jacobsen [1], who represented the supporting soil

as a shear beam in the 1930s. Building upon this idea,
Biot [2] extended the approach to investigate the seismic
response of building structures. A major step forward was
introduced by Chitty [3], who proposed a cantilever beam
composed of parallel bending and shear beams intercon-
nected by rigid, axially inextensible links, thereby estab-
lishing a continuous model capable of representing both
bending and shear deformations. This formulation was
subsequently applied by Chitty and Wan [4] to the static
analysis of tall buildings; however, axial deformations
in vertical elements were neglected, which constitutes
a significant limitation for tall building systems. In the
decades that followed, numerous studies expanded these
concepts to encompass a wide range of structural config-
urations and boundary conditions, including contributions
by Skattum [5], Rosman [6, 7], Hegediis and Kollar [8§],
Miranda [9], Potzta and Kollar [10], Zalka [11], Bozdogan
et al. [12], Bozdogan and Ozturk [13], Bozdogan [14, 15],
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Catal [16], Chesnais et al. [17], Zalka [18], Capsoni and
Moghadasi Faridani [19], Wang et al. [20], Laier [21], and
Franco et al. [22].

Early analytical models were generally based on
single-field formulations such as the classical Euler—
Bernoulli bending beam or the shear beam. These mod-
els were capable of capturing global bending and shear
behavior but neglected axial deformations in verti-
cal members. Over time, two-field models gained wider
acceptance. The Timoshenko beam, which combines
bending and shear effects in series, became a standard tool
for capturing the interaction between bending and shear
deformations. In parallel, sandwich beam formulations—
consisting of a Timoshenko beam coupled with a bend-
ing beam—were proposed to enrich the representation of
deformation mechanisms. More recently, multi-field mod-
els have been introduced to further enhance accuracy.
The generalized sandwich beam and its modified variants,
for instance, explicitly account for local shear mechanisms
in structural walls [17, 19]. Although often overlooked in
earlier studies, these mechanisms have been shown to sig-
nificantly influence the dynamic response of tall buildings.

The study of soil-structure interaction (SSI) has
been dominated by numerical approaches, including the
finite element method, the finite difference method, and
the boundary element method. While these techniques
offer high fidelity, they require significant computational
resources and are therefore less suitable for rapid pre-
liminary analyses. Continuous analytical models, on the
other hand, have traditionally assumed rigid-base condi-
tions and have thus neglected foundation flexibility. Two
main strategies are commonly used for SSI modeling: the
direct method, in which the soil and the structure are mod-
eled as a unified finite element domain, and the substruc-
ture method, in which the soil-foundation system and the
superstructure are treated as distinct but interacting sub-
systems. The substructure approach, adopted in this study,
offers important advantages in terms of computational
efficiency and has been shown to provide sufficient accu-
racy for engineering practice [23-25].

Several researchers have sought to integrate SSI effects
into continuous formulations. Ambrosini [23] developed
a lumped-parameter model based on a generalized beam for-
mulation to investigate the role of soil damping in seismic
response. Nakhaei and Ali Ghannad [24] conducted paramet-
ric studies on nonlinear single-degree-of-freedom systems,
demonstrating the influence of soil-structure stiffness ratios
on seismic damage indices. Medina et al. [25] developed

methods to estimate natural periods and damping ratios for
pile-supported shear buildings, explicitly accounting for
SSI. Other studies incorporated SSI using Timoshenko beam
formulations, including those by Cheng and Heaton [26],
Shirzad-Ghaleroudkhani et al. [27], Taciroglu et al. [28],
Di and Fu [29], and Kara et al. [30]. Hybrid approaches
have also emerged, such as optimization-based formulations
aimed at reducing seismic demands [31], boundary-element/
continuous-beam couplings [32], Bayesian system identifi-
cation techniques [33, 34], and equivalent discrete—continu-
ous models for control systems [35-37]. Additional studies
have examined higher-mode effects under SSI [38], seismic
wave propagation effects [39], and global buckling under
soil flexibility [40]. Despite this extensive body of research,
key limitations remain. Most classical continuous formu-
lations assume constant mechanical properties along the
height of the building, thereby restricting their applicabil-
ity to realistic structures in which stiffness and mass vary
with elevation. Similarly, foundation flexibility is often dis-
regarded, even though it substantially modifies both static
and dynamic responses. Moreover, rotational inertia is usu-
ally neglected in analytical formulations, despite its growing
influence on higher vibration modes.

Although several studies have advanced continu-
ous formulations in different directions—including
soil—structure interaction (e.g., Ambrosini [23]; Medina
et al. [25]; Taciroglu et al. [28]), generalized continua
and multi-field models for wall-frame systems (Chesnais
et al. [17]; Capsoni and Moghadasi Faridani [19]), and the
influence of rotational inertia on higher vibration modes
(Tong and Christopoulos [38])—these contributions typ-
ically address these aspects in isolation. Only a limited
number of works incorporate foundation flexibility, rota-
tional inertia, and height-varying properties simultane-
ously within a unified continuous beam analogy. This gap
motivates the development of the present formulation,
which integrates these effects in a consistent manner and
provides a computationally efficient framework suitable
for both uniform and non-uniform tall buildings.

In this study, a continuous model is developed based on
the parallel coupling of a bending beam and a shear beam,
which is extended to explicitly incorporate soil flexibility
and rotational inertia. The governing equations, constitu-
tive relations, and boundary conditions are derived rigor-
ously using Hamilton's principle. Closed-form solutions
are obtained for uniform buildings through the Laplace
transform, while a modified transfer matrix method is
introduced for non-uniform structures. This formulation



avoids matrix inversion, thereby improving computa-
tional efficiency. Parametric investigations are conducted
to assess the influence of soil flexibility, stiffness distri-
bution, and rotational inertia on both static and dynamic
responses. Comparisons with reference models and finite
element simulations confirm the accuracy of the proposed
formulation, demonstrating its potential as a practical tool
for the preliminary design and assessment of tall buildings
considering soil—structure interaction.

2 Continuous model: parallel coupling of a bending
beam and a shear beam

The tall building is represented by a continuous model
obtained from the parallel coupling of a bending beam
(hereafter, EBB beam) and a shear beam (hereafter, SB
beam). This formulation, originally proposed by Chitty [3]
and Chitty and Wan [4], is herein referred to as the cou-
pled shear—bending beam (hereafter, CTB beam). The two
beams are interconnected by rigid, axially inextensible
horizontal links that transmit only horizontal forces with-
out undergoing deformation (Fig. 1).

The EBB beam is responsible for resisting bending
deformations, whereas the SB beam resists shear deforma-
tions. By enforcing equal horizontal displacements through
rigid connectors, the system combines the complementary
deformation profiles of both components. Specifically, the
EBB beam exhibits a deformation shape favorable to lat-
eral loading, with a maximum slope at the base, whereas

CTB

KT

@
Fig. 1 CTB beam with flexible base support: (a) uniform properties, (b) variable properties
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the SB beam displays a profile with a maximum slope at the
top. Their parallel coupling generates a hybrid deformation
mode: bending-dominated in the lower stories—thereby
limiting displacements near the base—and shear-dom-
inated in the upper stories—thereby reducing displace-
ments at the top. This interaction enhances the overall lat-
eral stiffness of the structure, often exceeding the sum of
the individual stiffnesses of the two beams.

The CTB beam is described by a single transverse dis-
placement field, denoted as u(z), which is shared by both
sub-beams through the rigid links. The bending and shear
stiffnesses are denoted by K, and K , respectively, and the
total height of the building is denoted by H. Soil flexibil-
ity is modeled through translational and rotational springs
characterized by stiffnesses K. and K ,, respectively.

The following assumptions are adopted:

1. structural elements behave in a linear elastic manner;

2. diaphragms are considered rigid in their plane and

transmit only horizontal forces;

3. axial deformations in vertical elements are neglected;

4. discrete shear forces transmitted by the connectors

are modeled as a continuous shear flow at the mid-
plane of the connecting elements;

5. the Bernoulli-Navier hypothesis applies to the con-

necting beams;

6. second-order (P-A) effects are neglected; and

7. connecting beams do not undergo axial deformations.

EBB SB CTB

X
KT u

(®)



4 Pinto-Cruz
Period. Polytech. Civ. Eng.

It should be noted that the formulation developed in
this study is restricted to the linear elastic range and does
not incorporate P—A effects or global instability phenom-
ena. Although these effects may become relevant in tall
buildings subjected to severe seismic actions, their inclu-
sion would require extending the analysis to a geometri-
cally nonlinear framework, which lies beyond the scope
of the present work. Consequently, the proposed model

is applicable to structures in which lateral drifts remain
moderate, a condition typically satisfied by buildings with
sufficient lateral stiffness and moderate seismic demands.

3 Static analysis
3.1 Governing equations and boundary conditions
The strain energy of the CTB beam is expressed as:

! IK” ()T dx%'j K [ ()] e K [u(0)] 2 Ko [ ()T M

The work done by an arbitrary distributed lateral force
f(x) along the height is:

Wzljf(x)u(x)dx )

Therefore, the Lagrangian functional is expressed as:

. :%’JZKb [ () dx+%IKs [u'(x)] dx+%KT [u(0)] +%KR [u'(0)] _Tf(x)u(X)dx 3)

0
According to Hamilton's principle:

5[(2-W)dt=5[Tidt =0 @
Substituting Eq. (3) into Eq. (4) and integrating by parts
yields the governing equilibrium equation:

Ku" (x)-Ku"(x)— f(x)=0 ®)
Constitutive laws (moment and shear force):

M(x)=K,u"(x) (©)

V(x):—Kbu'"(x)+KSu'(x) @)

Boundary conditions:
* At the clamped end (base)

(0)= @ ®)
w(0)="2) ©)

* At the free end (top)
M(H)=0 (10)

V(H)=0 (11)

0

It is worth noting that, since the static problem does
not involve kinetic energy, the governing equation can be
derived directly from the principle of minimum poten-
tial energy. The use of Hamilton's principle in Eq. (4) is
equivalent in this context and is retained solely for consis-
tency with the variational framework adopted later in the
dynamic formulation.

3.2 Analytical and numerical formulation
To facilitate analysis, the governing equation is normal-
ized with respect to the dimensionless coordinate z = x/H:

nn KYHz ” H4
u"(z)- Y (z)zFf(z) (12)

h

The normalized internal forces are expressed as:

M (2) :%:M(z) _u(2) (13)
V*(z):i—SV(z):—u”'(z)+azu'(z) (14)

A key dimensionless parameter, denoted as the lateral
stiffness ratio or coupling factor, is defined as:

K
a=H |[— (15)
Kb




This ratio controls the relative contributions of shear
and bending deformations. When a — 0, the model
reduces to a pure bending beam (EBB). When a — o, the
model approaches pure shear (SB). Intermediate values
capture the coupled behavior [9].

Substituting these definitions, the normalized govern-
ing equation becomes:

The application of the Laplace transform allows the
differential equation to be solved in a more convenient
transformed domain. Subsequently, the inverse Laplace
transform is applied to project the solution back into
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M’,’,(Z)—(Xzbl"(Z):l(Z) (16)
Assuming that u(z) is defined for z > 0, its Laplace
transform is defined as:
U(S):L[u(z)]zju(z)e’”dz (17
0
Applying the Laplace transform to the governing equa-
tion yields:

;z)mz)]

52 (s2 —a

(18)

the original physical space. The contribution of the lat-
eral load f{z) is evaluated using the convolution theorem.
Applying this procedure yields:

u(z) _ u(0)+ sinhOEaz) u'(0)+ —1+czs2h (az) o (0)+ (az)—ii:lh(az) - (0)

+j/1(r) —(a(z—r))+as3inh(a(z—r)) 0 (19

(=) = cosh (az)u'(0) + smhof"‘z) M (0)+1_CO;$V* (o)+jx(7){_“°05hoff‘ (Z_’))}df 20)
The internal forces are expressed as:

M (=) = asinh (@) (0) + cosh (=) M (0) + M%) 1 (g) 4 [ (T)[Smh(“ofz”)qdf @)

(22)

The displacement and internal force vectors can then be
assembled in compact matrix form:

] j.)v(r){—(a(z—T))+s3inh(a(z—r))}dT

o

_1 sinh(az) —1+cosh(az) (az)-sinh(az)
2 3
u(z) ’ sin}?(az) l—co(Zh(az)
u'(z) | |0 cosh(az) .
* - o a
M
. (Z) . sinh(az)
V' (z) 0 asinh(az) cosh(az) -
a
0 0 0 1

u(O) z —1+cosh(a (z—r))
u’*(O) li(r){ = }dr
M* (0) jl(f){sinh(a;z—r)):ldr

0

) —I).(r)dr

0

23)
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or

j./l(r){_(a (z—‘c))+sinh(a (z—r))}h_

sinh(az) —l+cosh(az) (az)-sinh(az)] u(0) ) o2
u(z) a _a2 ol u'(0) z ) —1+cosh(a(z—r)) -
u’*((z)) |0 cosh(az) S‘nhOE“Z) 1—002;1(062) w(0)] J#( ){ - }/
v i : Z sinh(a(z—-1
V'(z) 0 asinh(az) cosh(az) _SthEaZ) u(0) _([/’t(r)[ h( OE ))10#
10 0 0 1 2 )

where .. and 5, are two additional parameters that repre-
sent the soil flexibility:

Kb

B; = 25
" HK,
K
Br=—m (26)
* HK,

Applying the boundary conditions and solving yields:

u(O)Zﬂsz.),(T)dT 27)

sinh(az) —1+cosh(az) (az)-sinh(az)
o o’ o’

sinh(oz) 1-cosh(az)
M(z)= 0 cosh(az) . —
inh

0 asinh(az) cosh(az) _sm (22)

o
0 o 0 1

The relationship between displacement and internal
force vectors across consecutive stories is expressed as:

u u
Y TR (30)
M M
v v

i+1 i
where F, is the lateral load vector applied at the i-th node.
The relationship between the force—displacement vec-
tors at the n-th and initial stories is established by multi-
plying the transfer matrices and incorporating the external
force vector [12]:

24

1 1

~[A(x)sinh(a(z~7))dz +sinh(a) [ A () de

Pr a[ﬁ,fa sinh(a)+cosh(a)]

(28)

Given u(0) and u'(0), the displacement and internal
force fields are determined analytically. Furthermore, the
transfer matrix is obtained directly:

(29)

u u(O)

“ L 1m “(0) S F+F 6D
M* k=n g M*(O) s=1|_k=n g * !

v, 7 (0)],
ie.,

u u(O)

u' B u'(O)

u =N M (0) +f (32)
V' V'(0) ],

where [12-15]



N = ﬁMk 33)
f= Z[ﬂ M, }F +F, (34)

In simplified form [12], and substituting the boundary
conditions, the expression becomes:

PR VSRAIES | PYRRNEL 7]
{u” (h” )} _ B]% L2 ﬁ; 3.1 ﬁrz
ur'r (hn ) N N2,4 Nz,s N4,4

Accordingly, a general analytical solution is developed
for structures with both uniform and non-uniform properties
along their height, subjected to arbitrary lateral loads and
variable soil flexibility. The direct derivation of the transfer
matrix eliminates the need to compute the inverse of sin-
gular matrices, thereby yielding significant computational
efficiency—an aspect that is particularly advantageous for
tall buildings with height-dependent characteristics.

== %TKb [u"(x,0)] dx+%TKS [u'(x,0)] dx+%KT [u(0.0)T +%KR [u'(0.0)]

The conventional coupling of bending and shear beams
typically neglects rotational inertia. To explicitly include
this effect, the total kinetic energy is modified as:

T :%T[yuuz (x,1)+y,u” (x,t)]dx (38%)

0

N3,3

| (44
Nos | Ul U

B

N;, +

2.1 ﬂ_Tz Nz,z"‘ﬁ_; N4,1+B_; N4,2+
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u(0)
”(hn) N1,1 N1,2 N1,3 N1,4 u'(()) f1
W) | Na Moz Moo Mo || W@ VAL oo
0 N3,1 Ns,z N3,3 Ny, R fs
0 N4,1 N42 N4,3 N44 H(O) f4

2

T

The displacement field is obtained by solving the result-
ing system of equations:

-1

(36)

4 Dynamic analysis

The objective is now to derive the equations of motion of the
proposed continuous model, evaluate the influence of soil—
structure interaction and rotational inertia on the vibra-
tion characteristics of tall buildings, and establish a uni-
fied framework for computing natural frequencies, mode
shapes, and modal responses under dynamic excitation.

4.1 Governing equations and boundary conditions
The strain energy of the CTB beam is expressed as:

(37

where y, = Z pA and y, = Z pI, denote the translational

i=1 i=1
and rotational mass per unit length, respectively. The prime

, .
() and dot () operators represent spatial and temporal
derivatives, respectively.

Therefore, the Lagrangian functional is expressed as:

17 y 2 17 , 2 1 2 1 , 2 17 .2 .o
HZE-([K" [u (x,t)] dx+5_([Kx [u (x,t)} dx+EKT[u(0,t)] +EKR[u (O,t)] _5-([[7/"” (x,t)+7/0u (x,t)]dx 39)

and Hamilton's principle requires:

5T(E—T—W)dt :(Stj'l'ldz =0

] h

(40)

After substitution and integration by parts, the govern-
ing equation of motion becomes:

Vi (x,0) = y,ii" (x,0)+ K,u"" (x,0)— Ku"(x,0) =0 (@)

Boundary conditions:
* At the clamped end (base)

u(0,) = L%1) 42)
u'(0.1) = Ml((o”) @3)
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* At the free end (top)

M(H,t)=0 (44)

V(H,t)=0 45)

A separation of variables is assumed:

u(x,t):¢(x)q(t) 46)

where ¢(z) is the spatial mode shape and ¢(¢) the general-
ized coordinate. Substituting Eq. (46) into Eq. (41) yields:

K0k @)]
1) {ym)—wm }9(’) ’ “

Since time and spatial coordinates are independent, each

term must equal a constant with opposite signs to satisfy
the identity. This leads to the decomposition of the govern-
ing equation into two ordinary differential equations.

(j(t)-i-a)zq(t):O 498)

K" (x) (K, ~7,0")¢" (x) - 7,0 (x) =0 49)

The first equation corresponds to the equation of motion
of a single-degree-of-freedom (SDOF) system with natu-
ral frequency w.

The normalized internal forces are expressed as:

M*(z)zg—zM(z)z(]ﬁ"(z) (50)
V*(z)=g—:V(z)=—¢”'(z)+az¢'(z) s1)

Three dimensionless parameters are introduced:

o= K (52)
b
H4
y = y“—wz (53)
Kb
L |y,
- |l (54)
H=0 .

Normalizing with z = x/H:

9" (2)=(a” =7’ )" (2) =19 () =0 ©43)

Assuming that ¢(z) is defined for z > 0, its Laplace
transform is defined as:

D(s)=L[¢(z)]= Tqﬂ(z)e’”dz (56)

Applying the Laplace transform to the governing equa-
tion yields:

S|:S2—(Ot2—j/zpz):| s2+}’2,uz s . 1 .
s)= + "(0)+ - 67
(D( ) (s2—§2)<52+ﬂ2) (0) (Sz_éz)(sz_’_ﬁz)(p (0) (Sz_éz)(sz+ﬁ2)M (0) (Sz_éz)(sz+ﬁz)V (O) 57
where
: ) —(az—y2,u2)+\/(a2—7/2/.12)2+4}/2
:\/(“z—yzuz)ﬂ/(zz—yzuz) +4y° 58 ﬂ_\/ 2 %)

The displacements and internal forces are obtained by
solving the Laplace-transformed differential equation and
subsequently applying the inverse Laplace transform.

p*+&

5(2)= {[éz (o —y7w?) Jeosh (£2)+[ B +(a” _y2”2ﬂcos(ﬂz)}¢(o)

(é +y2‘u2)smhé(§z)+(’3_y2u2)sin(ﬂz)

_sinh(&z) s sin(Bz) (60)

p*+¢&

e

p*+&*
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p*+¢&

(5+;/2,uz)cosh(§z)+(ﬁ—Vzuz)COS(ﬁZ) , Esinh(Ez)+ Bsin(Bz) | . —cosh(&z)+cos(Bz) | .
{ L g(0)s| SIEN LIy )| 2 EN )

¢'<z)={[’=‘2‘(“2‘V”Z)J’?Smh@z)—[ﬂﬂ(az—VZ“ZW Sin(ﬂZ)}«ﬂ(o)

(61)

. {[é e 0 e coswz)}w

+{(5+V2“2>5sinh<€z>—(ﬂ—W)ﬁ Sin(ﬁZ)}«ﬂ'(oszCOSh(éZWZCOS(ﬁZ)}M*(o) )

p*+& B*+&’
{—g sinh(£z)— Bsin(Bz)
B*+&’

o

V*(Z):{‘[é (o2 -rw) E(£ - )Sinh(f;);g @~y w?) BB +a )sin(ﬂz)}¢(0)
+{—(§+y2u2)(§2_a2)cosh(f;)+é(zﬁ—y2u2)(ﬁz +a2)cos(ﬁz)}¢'(o) ©
+[_§(§2_az)sinh(52)+ﬂ(ﬁ2+a2)sin(ﬂz):lM*(O)+l:(§2_aZ)COSh(gz)_’_(ﬂz+a2)cos(ﬁ2):|V*(0)

p*+¢&* B> +¢&’

The displacement and internal force vectors can then be
assembled in compact matrix form:

$(z) M, (z) M,(z) M;(z) M,(2) ¢(0)
¢'(2) _| My (2) My, (2) M,,(z) M, (2)|] ¢'(0) (64)
M (z) M, (z) M,,(z) M, (z) M,,(z)||M (0)
V'(z) M, (z) M,,(z) M,,(z) M, (z)]|V(0)
4(0)
$(z) M, (z) M,(z) M;(z) M,,(2) $'(0)
$'(2) _| My, (2) M,,(2) Myi(z) M,.(2)])4'(0) (65)
M (z) My (z) M,,(z) M (z) M,,(z) F
V*(Z) M,, (Z) M,, (Z) M, (Z) M,, (Z) ¢(0)
B;
Applying the boundary conditions yields:
M, (1) M, (1)
M, (1)+—= M, (1)+—=
B; Br {¢'(2)} _ {0} (66)
M,, (1)+ MZZ(]) M,, (1)+ M4ﬂ,32(1) ’ (Z) ’
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10]

A non-trivial solution exists when the determi-
nant of the coefficient matrix equals zero, indicating its

[M3,1 (1)M4,2 (1) - M3,2

(1)M4,1 (1):| ﬁﬁﬁé +|:M3,1 (1)M4,3 (1)_M3,3 (1)M4,1 (1):| ﬁz%

singularity. After straightforward manipulations, this
determinant can be expressed as:

(67)

+{ My, ()M, , (1)- My, ()M, , (1) Bz +[ My, (1) M, (1) M, (1) M, ,(1)]=0

Solving the determinant yields the eigenvalues d, which
in turn allow for the calculation of the vibration periods:
_2zxH? |y,

ry VK,

T

(68)

where r is a correction factor introduced to account for
vertical loads applied at discrete floor levels rather than
uniformly distributed along the building height [18], and
N denotes the number of stories.

N
"=\ N+ 206 ©)
The transfer matrix is obtained as:
M1,1 (z) Ml’2 (z) M1,3 (z) M1,4 (z)
M, (z) M,,(z) M,,(z) M,,(z)
M(z)= ’ ' ’ ' (70)
B)= v (2) 0,2 (2) Mu() M (2)
M,, (z) M,, (z) M, (z) M,, (z)

The relationship between displacement and internal
force vectors across consecutive stories is expressed as:

)
| ¢’
M* - Mi M* (71)
/a0 I/

i i-1

I:N3,1 (1)N4‘2 (1)_N3,2 (1)N4,1 (1):| ﬂrzﬁ; + |:N3,1 (1)N4,3 (1)_

Solving the determinant yields the eigenvalues J, which
enable the determination of the vibration periods.

4.2 Special base constraints

4.2.1 Fully fixed: 2 — 0,2 — 0

In this scenario, the lateral and rotational stiffnesses at
the base approach infinity (K, — o, K, — o) preventing

(Esinh & +ﬂsin,3)[—e§ (52 —a2)sinh§+ﬁ(,32 +a2)sinﬁ]

+(§2 coshé +ﬁzcosﬂ)[(§2 —az)coshfi +(ﬁ2 +a2)cosﬁJ =0

Ny, ()N, (1)]87
[ Noy (DN, (1) =Ny, (DN, (1) Be + [ Nss ()N, 5 (1) = Ny (1) N, (1) ] =0

3

The relation between forces and displacements of the
n-th element and the initial element is established by apply-
ing the product of transfer matrices of the n elements [12]:

u,(h,) u(0) u(0)

uy(h) | u'(0) | ) u'(0)

()] UM 007 TV (0) (72)
Vn* (hn) n V* (0) 1 V* (0) 1
where [12]

N=ﬁMk (73)

Expressed in simplified form [12] is:

¢n (hn ) Nl,l NI,Z Nl,3 N1,4 ¢1 (0)
¢r: (hn) _ Nz,] Nzﬂz N2,3 Nz,4 ¢1’(0) (74)
M: (hn) N},l N3,2 N3,3 N3,4 Ml* (0)
I/n* (hn) N4,1 N4.2 N4,3 N4,4 VI* (0)
Applying the boundary conditions yields:
N. N.
Ny +—5 Ny, +—5
5 Bi {qs(z)}: {o} 5
N4,4 N4,3 ¢l (Z) 0
Ny+—— N, +—
Br Bx

A non-trivial solution exists when the determinant of
the coefficient matrix vanishes, indicating singularity.
The determinant can be expressed as:

(76)

base displacements—a typical condition for conventional
buildings. The characteristic equation for calculating the
eigenvalue y is:

N, (1)N4,3 (1)_ Ny, (1)N4,4 (1) =0

ie.,

(77)

(78)



4.2.2 Rotationally flexible and translationally fixed:

Bi#0,p7—0
In this case, only the lateral stiffness at the base tends to
infinity (K, — o), preventing translational displacement at

[N

ie.,

3.4 (1)N4,2 (1)_N3,2 (1)N4,4 (1)] ﬁ; +[N3,4 (1)N4,3 (1)_N
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the base. The characteristic equation for determining the
eigenvalue J is:

(1)N4,4 (1)} =0 (79)

[—(5 sinh & + Bsin B)(—(& + 721 ) (€2 —a Jcosh & +(B2 —y*u?) (B> + ) cos )

(& + 7 )gsinhg —(B —y*u*) psin p)((&* —a* )cosh & +( B +a2)cosﬁﬂﬁ,§

) —(gsinhgwsmﬁ)(—g(gz —a?)sinh & + B (B +a2)sinﬁ)
+(& cosh& + B cos B)((& —a” )cosh & + (B +a” )cos B

(80)

4.2.3 Rotationally free and translationally fixed:
B>, pr—0

This case corresponds to a pinned base condition where
K, — 0and K, — oo. The characteristic equation for deter-
mining the eigenvalue 9 is:

Nia (1)N4~2 (1)_N3,2 (1)N4,4 (1) =0 (81

1.e.,

(§ sinh & +ﬁsinﬂ)[—(§2 +7/2,uz)((;‘2 —ocz)coshz,t +(ﬂ2 —yz,uz)(ﬂz +a2)cosﬂJ

(8472w )Esinh g —(B* —yu*) Bsin B |[ (&2 —a* )cosh & +(B +a* )cos p | =0

4.2.4 Rotationally fixed and translationally free:

B2 0,52 — 0

A notable special case is that of isolated-base buildings
where K, — oo, K, — 0. In this condition, lateral displace-
ment is permitted while rotational displacement is fully

[(52 —(a2 —yz/,tz))éz coshé—([i’2 +(oc2 —yzuz))ﬂzcosﬂ}[—é(‘g’z —az)sinh‘g’ +ﬂ(ﬁ2 +a2)sin[3}

(82)

restrained. The characteristic equation for calculating the
eigenvalue 0 is:

N3,1 (1)N4,3 (1)_N3,3 (1)N4,1 (1)20 (83)

1.e.,

(84)

+(€;’2 coshé + pB* cosﬁ)[(é2 —(az —yzuz))’g’(éz —az)sinhé +(B2 +(o¢2 —yzyz))ﬂ(ﬁz +a2)sinﬂ} =0

The boundary conditions considered in Sections 4.2.3
and 4.2.4, despite leading to configurations that resem-
ble inverted-pendulum mechanisms, are included because
they represent fundamental limiting cases within the full
range of base stiffness conditions. Releasing either rota-
tion or translation at the base introduces additional global
degrees of freedom and shifts the deformation mechanism
from bending-dominated to rotation-dominated behavior.
These extreme scenarios are not intended to model com-
mon building configurations, but rather to complete the
analytical characterization of the proposed formulation,

to illustrate its behavior in boundary-condition limits, and
to provide insight into situations relevant for highly flexi-
ble foundations, base-isolation systems, or structures with
significant soil-structure interaction.

4.3 Modal properties

4.3.1 Orthogonality of vibration modes

To prove the orthogonality of the modes, the differential
equation is considered for a generic vibration mode r.
The Eq. (55) is multiplied by ¢ (2) and integrated over the
normalized height of the continuous model.
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12]

1

(81" ()8, (z)-a’¢)

0

Integrating by parts and applying the boundary condi-
tions yields:

JM

Similarly,

z)+a’g)(z ]dz—yrj[w 9!(z)+9,(z

considering another generic vibration
mode s, Eq. (55) is multiplied by ¢ (z) and integrated over
the beam height.

JH

z)+a’g)(z }k_%j[y¢ )9 (z)+¢, (2

Substituting the boundary conditions and perform-
ing subtraction yields the expression demonstrating the
orthogonality of the vibration modes:

}&_ (88)

VV_VSI[ﬂ¢ (2)+6,(z

gn[@@%' (2)]ad(r

Multiplying Eq. (90) by ¢ (z) and integrating over the

an[,

beam height yields:

Zn[y an[,

Due to the orthogonality of the mode shapes, the off-

(2)+1°¢/(2)9!(2) ]d(

diagonal terms for » # s vanish. Considering the diagonal

[Iyu[¢ 2)+ 19" ( j [jw Y,

Reorganizing terms yields the standard single-
degree-of-freedom (SDOF) equation in the form:

jf(z t)¢(z)dz

Inw

93)

§(1)+ (1) =

)+ 19" (2) ] dz

<z>¢x<z>}dz=ﬁj [-1240(2)6, (=) +4, (=

~124!(2)]q(1)= £ (1)

+/,t ¢ )]dzjq(t):

]& (85)
}& (86)
(z)]dz (87)

4.3.2 Modal analysis of forced dynamic response to
ground motion

Displacements in each mode are expressed in terms of
generalized coordinates as follows:

0

u(z,0)=2.4,(2)a (1)

r=1

(89)

Thus, the response of the eigenvectors is expressed as a
superposition of individual vibration modes. The coupled
differential equation for the r-th mode is rewritten as:

(90)

1

(2)+1°9/(2)8.(2) Jq(t) = [ £ (z.1)9, (2) =

0

o1

terms corresponding to » = s, the following expression
is obtained:

1

If(z,t)q)(z)dz

0

92)

For seismic excitation, the external force term is
replaced by the effective inertia force: f(z,f) = —yuiig(t).
Then Eq. (93) becomes:

1

Jyu(b (z)dz
() g (1)=

1 (94)
jyu [¢2 (z)+ we' (z)} dz

i, (1)



1.e.,
G(t)+w’q(r)=-Tii, (¢) (95)

The modal parameters are defined as follows:
* Modal earthquake excitation factor:

L={y,(z)d (96)

0

* Generalized modal mass:

M= Iyu (92 (2)+ 1’9" (2) ]z 97)
* Modal participation factor:
J-)/M(b (z)dz
=+ L 98)
J-y” [(/52 (Z)+ we'” (z)] dz

Assuming ¢(f) = I'D(¢), the dynamic equation reduces to:
D(t)+’D(1)=ii, (1) 99)

This corresponds to the motion equation of an equiva-
lent SDOF system subjected to ground acceleration iig(t).

4.3.3 Effective modal mass
The normalized effective modal mass is defined by:

'L Hdb(Z)dZT

L
Vu J‘[¢2 (Z)+H2¢;2 (z)]dz

0

(100)

4.3.4 Displacements
The displacement D(¢) is related to the pseudo-acceleration
A(f) by:

. H!
K5’

A(t)=w*D(1) > D(1) A(r) (101)

The modal displacement u(z,?) is given by:

:ﬂ.r‘ﬁ(z)A(t)
K, &

u(z1)=¢(z)q(1)=T¢(z)D(¢)

The maximum absolute value of u(z,?) is:

_7.H' To(2)
n0 — Kb 62

gS,(7) (103)
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where S (T) is the elastic pseudo-spectral acceleration for
an SDOF oscillator with period T.
The corresponding normalized expression is:

K, g(2)

i = o (104)
n0 gyqul no0 52

5.,(T)

Additionally, the term I'¢(z) can be rewritten as:

I¢(z)dz
ro(z) =
I[(/ﬁz (z)+ we'” (z)} dz

0

(105)

4.3.5 Story drift ratios
The maximum value of the drift is obtained as:
, _nH Te'(2)

Z/an =

K, 72

(106)

gs,(T)
The normalized form becomes:

= _ Kb Z/l’ _Fqb'(z)

- _ (107)
"oy Y8

$.(T)

4.3.6 Overturning moments
The modal contribution to the overturning moment is
expressed as:

K " K "
M (z0) = o (2:) = 5T (2) D(0) (108)
or
M(z,0)=Lr"(z,0)TA(1) (109)
14
The maximum value is:
M, = ;—2 "(z)Tgs, (T) (110)
normalized as:
_ F "
i, -, -0 Z(Z)Sa (T) (111)
&7 14
4.3.7 Shear forces
The modal shear force is given by:
V(2.0) =t [u"(2) - o' (2)] (112)
H3
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Substituting modal displacements leads to:

V(21) :%[qa’"(z)—aw(z)]m(z) (113)
or
7/ H m 20
V(z,t)z;—z[gb (z)-a’¢'(z) |TA(r) (114)
The maximum shear force is:
V.= y;—f[[qs"'(z)—azqs'(z)]rgsa (T) (115)

normalized as:

— 1

n0

- S,(T) (116)

n0 2

gy H 4

5 Numerical investigations

5.1 Verification and validation for the fixed-base case
To verify the proposed analytical framework, its results are
benchmarked against those obtained from Miranda's [9]
parallel coupling model for bending and shear beams.
The reference model adopted for comparison assumes
a fixed-base condition and neglects rotational inertia.
The validation is then followed by a parametric investiga-
tion of soil-structure interaction effects under four bound-
ary conditions: fixed (K, — o0, K}, — o0), pinned (K, — o,
K, — 0), isolated (K, — 0, K, — o), and free (K, — 0,
K,—0).

a=0.3 .
10"2xu(z)
o 1 2 3 4 5 6 7 8 9 10 11 12 13
0.0
0.1
0.2
0.3
0.4
N 0.5
0.6
0.7 = Miranda a=-5
’ = Miranda a=0.01
Miranda a=5
0.8 Miranda a=2000

Proposed model a=-5
Proposed model a=0.01
Proposed model a=5
Proposed model a=2000

oepom

5.1.1 Static analysis

To evaluate the accuracy of the proposed solution for static
analysis, Figs. 2—7 present the lateral displacement and
interstory drift profiles for four distinct lateral load dis-
tributions governed by the dimensionless parameter a [9]:

F(E) =W (117)

1 _ e—a

where W __ denotes the peak intensity of the distributed
load at the top, and a is a dimensionless parameter gov-
erning the shape of the lateral load distribution [9].

The analysis considers three structural systems char-
acterized by a = 0.3, indicative of a bending-dominated
response; o = 3, representing an intermediate coupling
between bending and shear effects; and a = 15, corre-
sponding to a shear-dominated behavior. Notably, the pro-
posed model exhibits excellent agreement with the refer-
ence solution developed by Miranda [9].

For simplicity, Figs. 2—4 use the normalized displace-
ment #i(z) and #'(z), defined as:

w_.K,

ﬁ(z)zu(z)r};—x4 (118)
7 (z)=u ()2 119)

The lateral displacement and interstory drift profiles
are presented for the fixed-base condition (Fig. 5), pinned-
base condition (Fig. 6), isolated-base condition (Fig. 7),
and free-base condition (Fig. 8), thereby capturing the
influence of soil flexibility on the structural response.

a=0.3 100230 (2)
00 15 30 45 60 75 90 105 120 135 150 165 18.0

0.0
0.1
0.2
0.3
0.4
w05
0.6
0.7 = Miranda a=-3
= Miranda a=0.01
Miranda a=5
08 Miranda a=2000
B  Proposed model a=-5
0.9 ¢  Proposed model a=0.01
A Proposed model a=5
10 ©  Proposed model a=2000

Fig. 2 Lateral displacement and Interstory drift profiles for a = 0.3, representing a bending-dominated structural response
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a= 10°2 % () a=3 1002%10" (2)
00 03 06 09 12 15 18 21 24 27 30 33 00 04 08 12 1.6 20 24 28 32 3.6 4.0
0.0 0.0

0.1 0.1

0.2 0.2

04 0.4

b ——— Miranda a=-3 o — Miranda a=-5
0.7 ——— Miranda a=0.01 07 — Miranda a=0.01
Miranda a=5 Miranda a=5
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09 ¢  Proposed model a=0.01 09 ©  Proposed model a=0.01
' A Proposed model a=5 ’ A  Proposed model a=5
1.0 ©  Proposed model a=2000 10 ©  Proposed model a=2000

a=15 10M =1 (2) a=15 10M 40" (7)
0 2 4 6 8 10 12 14 16 18 20 22 0 27 30 33 36

w
=
©
—
[38)
—
N
-
(o]
™
—~
)
=

0.0 0.0 + + + + + + + + + +—Ppi
——— Miranda a=-5
0.1 0.1 ¢ ———— Miranda a=0.01
Miranda a=5

02 02 t Miranda a=2000

B  Proposed model a=-5
0.3 03 F ¢  Proposed model a=0.01

A Proposed model a=5
0.4 04 ©  Proposed model a=2000

N 0.5

0.6 0.6
Miranda a=-5
0.7 Miranda a=0.01 0.7
Miranda a=5 )
08 Miranda a=2000 08 °
B  Proposed model a=-5 °
09 ¢  Proposed model a=0.01 0.9
’ A  Proposed model a=5 ’
©  Proposed model a=2000

1.0

Fig. 4 Lateral displacement and Interstory drift profiles for a = 15, representing a shear-dominated structural response

BTA2=107-6; BRA2=10"-6 o BTA2=10"-6; BRA2=10"-6

10
0.9 09
0.8 08
n 05 w 0.5
0.4 0.4
03 03
02 —fy— =().3 02 e—f—r=() 3
—— =3 e =3
0.1 —— 15 01 —T— =15
0.0 > 0.0 >
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.00 002 0.04 006 0.08 0.10 0.12 0.14 016 0.18
u(z) u'(2)
Fig. 5 Fixed-base condition: Lateral displacement and Interstory drift profiles for o = 0.3, o =3 and o = 15
In Figs. 7 and 8, the extremely large abscissa values (on in a normalized form involving the inverse of the transla-
the order of 10°) correspond to the limiting case of vanish- tional spring stiffness—the corresponding values become
ing translational stiffness at the base. Because the horizontal very large as the base stiffness approaches zero. This

axis is expressed in terms of compliance—or, equivalently, behavior does not imply infinite translation of the building;
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0.7
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Fig. 6 Pinned-base condition: Lateral displacement and Interstory drift profiles for a = 0.3, a =3 and o = 15

BT2=10%6; BR2=10"-6

—fy— o =() 3

0.2
—— =3
0.1 el =15
0.0 F t t t t P
1000000.00 1000000.03 1000000.06 1000000.09 1000000.12 1000000.15

U(2)

BT2=10"6; BR2=10"-6

Fig. 7 Isolated-base condition: Lateral displacement and Interstory drift profiles for a = 0.3, =3 and a = 15

BT2=106;R2=10"6
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Fig. 8 Free-base condition: Lateral displacement and Interstory drift profiles for a = 0.3, a =3 and a = 15

rather, it reflects the theoretical boundary condition of a
fully free or nearly free base. These cases are included to
illustrate the asymptotic behavior of the proposed formu-
lation and to complete the parametric spectrum between
perfectly fixed and fully flexible foundations.

5.1.2 Dynamic analysis

To evaluate the accuracy of the proposed solution for
dynamic analysis, Fig. 9 presents the computed eigenval-
ues corresponding to the first five vibration modes while
neglecting rotational inertia effects. The analysis spans
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Fig. 9 Fixed-base condition (x = 0): (a) Eigenvalue y, (b) Eigenvalue

and (c) Eigenvalue ¢ for the first five vibration modes

a broad range of structural configurations by varying the
parameter a from 0, representing pure bending behavior,
to 15, indicative of a shear-dominated response.
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The results demonstrate a high degree of consistency
between the proposed solution and the reference solution
developed by Miranda [9], thereby confirming the accu-
racy of the analytical approach.

The 25-story SE Executive Tower (Fig. 10), previously
analyzed by Huergo and Hernandez [35], is employed as
a benchmark to compare the dynamic response of a struc-
ture founded on rigid soil. The objective is to evaluate
the accuracy of the proposed formulation in estimating
the fundamental vibration periods. The relevant struc-
tural parameters are as follows: total height H = 93.65 m;
distributed mass y = 112500 kg/m; bending stiffnesses
K, =2.0637 x 10° kN m* and K, = 5.1913 x 10% kN m?;
and shear stiffnesses K = 2.1178 x 10 kN and
K, = 2.5008 x 10° kN. The first three natural periods
computed using the proposed model are compared with
those reported in [35].

Table 1 presents the first three natural vibration peri-
ods of the SE Executive Tower in the x- and y-directions
under a fixed-base condition. The results show excellent
agreement between the proposed analytical solutions and
those obtained from finite element simulations performed
using SAP2000 [41].

Subsequently, a parametric analysis is conducted to
compute the eigenvalues corresponding to the first five
vibration modes by varying the parameter a under four
boundary conditions: fixed base, pinned base, isolated base,
and free base. The influence of soil flexibility is explicitly
accounted for in all cases, as illustrated in Figs. 11-15.

5.1.3 Influence of rotational inertia on the eigenvalue y
The classical model developed by Miranda [9] neglects
rotational inertia in the dynamic formulation. To assess the
implications of this assumption, the influence of explicitly
incorporating rotational inertia on the first three vibra-
tion modes is examined under four boundary conditions:
fixed, pinned, isolated, and free. The comparative results
are presented in Figs. 16—19. The effect of rotational iner-
tia is found to be nearly negligible for the fundamental
vibration mode, which explains its widespread omission
in the existing literature. However, for higher modes, its
influence becomes significant and increases with both the
mode number and the dimensionless parameter o, particu-
larly in shear-dominated configurations.

The influence of rotational inertia is generally negligi-
ble for the fundamental mode of tall buildings whose lat-
eral response is dominated by bending and whose mass
distribution varies smoothly along the height. However,
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iddd

AUkLA

(®)
Fig. 10 SE Executive Tower with fixed-base support: (a) General view
of the building and (b) Finite element model (FEM) representation

Table 1 First three periods of the SE Executive Tower with fixed-base

support
X-direction Y-direction
FEM (s) CM(s) Error  FEM(s) CM(s) Error
1 1.871 1.859  —0.66%  2.089 2.095 0.32%
2 0.470 0.464  -1.19% 0.617 0.62 0.54%
3 0.194 0192 -1.22%  0.301 0.308  2.30%
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Fig. 11 First vibration mode for x = 0: (a) Eigenvalue y, (b) Eigenvalue
and (c) Eigenvalue & under varying base conditions

its contribution becomes significant in several practical
situations, including structures dominated by shear defor-
mation, such as buildings with slender structural walls or
closely spaced coupling beams; systems with relatively low
bending stiffness compared with shear stiffness, in which
higher modes exhibit increased curvature concentration;
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Fig. 12 Second vibration mode for i = 0: (a) Eigenvalue y,
(b) Eigenvalue f and (c) Eigenvalue & under varying base conditions

buildings supported on flexible foundations, base-iso-
lated systems, or soil-structure interaction conditions that
amplify the contribution of higher vibration modes; and
configurations in which the upper modes develop substan-
tial rotation gradients. In such cases, neglecting rotational
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Fig. 13 Third vibration mode for = 0: (a) Eigenvalue y,

(b) Eigenvalue f and (c) Eigenvalue ¢ under varying base conditions

inertia may lead to an underestimation of higher-mode fre-
quencies and an inaccurate representation of mode shapes.
The proposed formulation overcomes these limitations by
explicitly incorporating rotational inertia in both the static
and dynamic analyses.
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5.1.4 Parametric analysis considering soil flexibility

To validate the applicability of the proposed solution in the
limiting cases of bending- and shear-dominated behavior,
the influence of soil flexibility on the eigenvalue associated
with the vibration period is examined. For this purpose,
acomprehensive parametric study is conducted, comprising
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Fig. 15 Fifth vibration mode for 1 = 0: (a) Eigenvalue y, (b) Eigenvalue
and (c) Eigenvalue & under varying base conditions

91 simulations for each limiting case. To encompass the
full spectrum of possible soil conditions, the dimensionless
parameters governing translational and rotational soil flex-
ibility are varied over the wide ranges 7 = 107 — 107 and
p2 =107 — 10, thereby covering all boundary conditions
from fully free to fully fixed bases.
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eigenvalue y for the first, second, and third vibration modes eigenvalue y for the first, second, and third vibration modes
Fig. 20 presents the eigenvalue results for the case a =0, Similarly, Fig. 21 presents the eigenvalue results for
corresponding to a purely bending response, in compari- the case a = 27.5, representative of an approximately pure
son with exact solutions obtained from a classical bending shear response. These results are compared with exact
beam model. An excellent agreement is observed over the solutions derived from a shear-dominated beam model,
entire range of soil flexibility. revealing excellent agreement, particularly for scenarios

characterized by high soil flexibility.
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the eigenvalue y for the first, second, and third vibration modes

6 Conclusions and future work
The main contributions and findings of this study are sum-
marized as follows:

* A continuous analytical model for tall buildings is
developed based on the parallel coupling of a bend-
ing beam and a shear beam, extending classical

Soooo

J;LJ

P
S

T

Wi —o
[=X=R=RV]

= NN N W L) W W
[T R N S RS e =)
— T T T T T T T T

°
°
°
°
°
°
o
°

S W AN O N
T

105
100

Soooo

W b — o
o OO N

(=]

(=]
—
o 4
w o+
=
w
(=)}
~
=)
el
—_
(=]
—
—_
—
¥
—
w
— 4
=

(b

170
160
150
140
130
120
110

SSoSo

SRS~

) b — O
SO O

4 5 6 7 8 9 10 11 12 13 14 15

©

(=]
—
[SRE 3
w o+

Fig. 19 Free-base condition: Influence of rotational inertia () on the

eigenvalue y for the first, second, and third vibration modes

formulations by explicitly incorporating foundation
flexibility and rotational inertia.

* The governing equations and boundary conditions
are rigorously derived within a variational frame-
work. Closed-form solutions are obtained for uni-
form buildings via the Laplace transform, and
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a modified transfer matrix method is introduced for
non-uniform systems, avoiding matrix inversion and
improving computational efficiency.

* The model captures bending-dominated, shear-dom-
inated, and coupled responses by varying the relative
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magnitudes of bending and shear stiffnesses, and it
accommodates arbitrary lateral load distributions.

» Rotational inertia—often neglected in previous con-
tinuous models—is shown to have a negligible influ-
ence on the fundamental mode but a significant effect



24 Pinto-Cruz
Period. Polytech. Civ. Eng.

on higher modes, especially in shear-dominated con-
figurations and under flexible-base conditions.

* Validation against Miranda's [9] fixed-base contin-
uous bending—shear model and finite element simu-
lations demonstrates strong agreement across bend-
ing- and shear-dominated regimes. A comprehensive
parametric study covering more than 182 cases con-
firms the robustness and accuracy of the proposed for-
mulation under varying soil-structure stiffness ratios.

* The model provides a practical and computationally
efficient tool for preliminary design and sensitivity
analyses of tall buildings, enabling the inclusion of
soil—structure interaction and higher-mode effects
without the computational demands of detailed finite
element models.

It is important to note that the proposed model does not
account for second-order (P-A) effects or stiffness reduc-
tions associated with geometric instability. Consequently,
its applicability is restricted to structures that remain
within the linear elastic range and whose lateral displace-
ments do not induce significant second-order amplifica-
tion. Under these conditions, the formulation is suitable for
tall buildings with adequate lateral stiffness and seismic
acceleration levels that do not produce excessive drifts.

Future extensions of the model may include the incor-
poration of second-order (P-A) effects and geometric-stiff-
ness degradation; nonlinear soil-structure interaction,
including hysteretic and radiation damping mechanisms;
advanced damping models and energy-dissipation mech-
anisms; and application of the formulation to perfor-
mance-based seismic design of tall buildings and systems
with base isolation or highly flexible foundations.
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