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Abstract

Soil structure interaction is often modeled by lumped parameter models, which consist of connected springs, masses, and dashpots. 

It was shown that this model – even for the case of elastic behavior – can be rather inaccurate since radiation damping is not properly 

represented. Pap and her coauthor suggested a simple model that overcomes this problem: a simple infinitely long bar on an elastic 

foundation connected parallelly to a mass-spring system. Since soil nonlinearity can affect the response considerably, even in the 

case of moderate seismicity, Pap’s model is extended in this paper for nonlinear soil behavior. As a result, the 3D nonlinear soil can 

be replaced by a simple beam resting on a foundation and connected parallelly to a mass-spring system. In addition to the three 

elastic properties, the level of plastification must be prescribed. This model is recommended for the practical modeling of soil-structure 

interaction when the nonlinearity of the soil is significant.
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1 Introduction
Structures subjected to horizontal loads and wind are often 
analyzed by assuming a rigid connection to the ground. 
This  approximation is unacceptable in the case of earth-
quakes, where the interaction between the structure and the 
soil affects the response significantly [1, 2]. The most accu-
rate soil-structure interaction (SSI) analysis method is the 
direct method (Fig. 1(a)), where the soil and the structure are 
modeled together. This procedure can be very time-consum-
ing and requires significant computational efforts. 

For linear systems, the soil can be represented by the 
impedance functions, where the weightless foundation is 
subjected to a harmonic force, and the steady state response is 
given as the function of the exciting frequency [3]. In theory, 
for horizontal motions, the impedance functions (and hence 
the soil) can be represented by a spring and a dashpot, the 
characteristics of which depend on the frequency (Fig. 1(b)). 
Although these models can be analyzed, e.g., by the Fourier 
transform [3‒5], it is rarely used in practical design.

A possible simplification is to use lumped parameter mod-
els (Figs. 1(c) and 1(e)). The simplest case is when one tradi-
tional spring and a dashpot are applied, where the charac-
teristics are independent of the frequency (Fig. 1(c)) [6, 7]. 

When the vertical dimension of the soil is finite, this model 
can be unacceptably inaccurate  [8‒10]. The  model can 
be refined by applying several springs and dashpots con-
nected parallelly and serially (Fig.  1(e)), where the char-
acteristics can be determined e.g., by the least square 
method [6, 11, 12]. The more complex model is applied, the 
more accurate solution can be achieved.

Pap and her coauthor argued [10] that these models are 
inefficient since radiation damping cannot be modeled 
with simple dashpot elements (Radiation damping occurs 
when the vibrating structure generates stress waves that 
radiate into an infinite or very large medium, for exam-
ple, into the soil.). This is illustrated in Figs. 2 and 3 [13]. 
In Fig. 2, the impedance curves of a mass-spring system 
and an infinite bar on an elastic foundation are compared 
without damping. In the first case, there is no energy dis-
sipation. In contrast, in the latter case, there is energy dis-
sipation when the exciting frequency is above the cut-off 
(resonant) frequency (which is indicated by the ninety-de-
gree phase shift). In Fig. 3, the two models with 5% damp-
ing ratio are compared; the significant difference between 
the two models is clearly visible. The infinite bar on an 
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Fig. 1 a) Direct method, b) impedance function, c) lumped parameter model with one frequency independent spring and dashpot element,
d) 1D model, e) complex lumped models

Fig. 2 (a) Impedance curves of a spring-mass system, (b) phase angle of a spring-mass system, (c) impedance curve of an axially constrained bar, (d) 
phase angle of an axially constrained bar (no damping) [13]
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elastic foundation captures fairly well the radiation damp-
ing, which is important in modelling the soil.

Following a detailed investigation and validation, Pap 
suggested to apply a simple model for the soil (Fig. 1(d)): an 
infinitely long bar on an elastic foundation connected par-
allelly to a mass-spring system. This model has only three 
independent parameters: these are the resonant (cut-off) fre-
quency (ωc), the static stiffness (K), and the ratio (η), which 
shows the contribution of the two sub models: the infinite 
bar on an elastic foundation and the mass spring system. 
In addition, the damping coefficient (ξ), can be prescribed.

In  [14], simple expressions were given for calculat-
ing these parameters for simple, regular cases, while an 
identification process was provided for complex, irreg-
ular cases. The expressions – for an infinitely long, uni-
form-height soil layer – are summarized in Fig. 4. In this 
figure, the characteristics of the model are defined: κ is the 
stiffness of the elastic foundation, EA  is the tensile stiff-
ness of the infinite bar, μ is mass per unit length, mo is the 
equivalent mass and ko is the spring constant. The relation-
ships between the above three parameters (ωc, K, η) and 
the characteristics of the sub-models are as follows [10]:
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Note that ks is the static stiffness of the infinite bar on 
an elastic foundation [14], i.e., the force applied at the end 
of the bar, which results in unit end displacement. When 
the width of the foundation is significantly smaller than 
the height of the soil layer η ≈ 1 and ko, mo are negligible. 

The shortcomings of Pap's model are as follows:
•	 it was verified only for rigid structures (e.g. build-

ings); nevertheless, it was recommended to be used 
for MDOF structures as well.

•	 It can be applied only to linear models, i.e., for small 
strains in the soil.

•	 Although preliminary calculations show that a simi-
lar model should be applied for rocking, it was inves-
tigated in detail only for horizontal vibration.

For very small strains, the stress-strain relationship of the 
soil is given by Hooke's law: τ = Gγ, where τ is the shear 
stress, γ is the shear (angular) strain, while G is the constant 
shear modulus. The relationship between γ and τ is nonlin-
ear for moderate shear strains, i.e., the shear modulus var-
ies with the strain, as shown in (Fig.  5(a))  [15]. Note that 
soil undergoes plastic deformations when the strains are 
not very small. For unloading, hysteretic behavior occurs, 
which results in energy dissipation, as shown in (Fig. 5(b)). 
In [16, 17], we investigated under which circumstances (soil 
type, soil geometry, seismicity) the nonlinearity of the soil 
may play a role. It was found that even in the case of mod-
erate seismicity, the nonlinearity should not be neglected. 

Fig. 3 (a) Amplification factor and (b) phase angle of the SDOF system and axially constrained infinite bar with damping ξ = 5% [13]

Fig. 4 Horizontally infinite soil layer with uniform thickness and the 
1D equivalent model parameters
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It is worth noting that the method called Beam-on 
Nonlinear Winkler Foundation (BNWF) is an approach 
for modeling shallow foundations with nonlinear soil 
behavior, and the application of dashpots at the bound-
ary of the FE mesh may also model energy dissipation. 
However, these models do not contain the fundamental 
behavior of soil, where radiation damping may play a role, 
and energy dissipation occurs only above the cut-off fre-
quency, as discussed above [18].

2 Problem statement
It was stated in the Introduction that for horizontal exci-
tation of linear SSI, Pap's model of an infinite bar on an 
elastic foundation should be used since the lumped param-
eter models cannot properly capture the radiation damp-
ing. This model should be 

•	 generalized for nonlinear soil behavior (material 
nonlinearity) and

•	 the validation must include flexible structures.

Let us consider a flexible structure that is connected 
through a rigid foundation to the soil (Fig. 6). The bedrock 
surrounds the soil. The  soil behaves in a linearly elastic 
manner when the angular strains are small; however, it has 
a hysteretic behavior at a given angular strain (Fig. 7). The 
bedrock is excited by horizontal earthquakes characterized 

by their histograms. Here, we focus on buildings, where the 
slenderness of the building is small. Thus, the dominant 
motion of the structure is horizontal, i.e., rocking has a small 
effect only. The building behaves elastically. We aim to gen-
eralize Pap's model according to the two bullets listed above.

We have to admit the limitations of our aims. First, the 
nonlinearity is a complex phenomenon (Fig. 5), here we 
will focus only on an elastic perfectly plastic nonlinearity 
with full hysteresis. Second, our investigation is limited 
only to dominantly horizontal vibration, not rocking. Our 
aim is to demonstrate that Pap's model can be extended 
simply for cases with significant nonlinear behavior.

3 Approach, hypotheses
Pap's model has two sub-models (Fig. 1(d)) with the fol-
lowing characteristics:

•	 The infinite bar on an elastic foundation, 
with μ, κ,  EA

•	 The mass-spring model: ko and mo

Note that the response of the system depends on three 
parameters only, listed in Eq.  (1). It is assumed that the 
nonlinearity of the soil (Fig. 7) can be taken into account 
in Pap's model in such a way that the role of the elastic 
characteristics κ,  EA  (Eq.  (1)) is changed: the model 
behaves in an elastic-plastic manner, with a hysteretic 
response, and it will be limited by (ττ EA and τκ) or N0 and 

Fig. 5 (a) Stiffness-strain behavior of soil with typical strain ranges, 
and (b) nonlinear elastic and plastic model with hysteresis behavior [15]

Fig. 6 Flexible structure connected to a rigid foundation and soil layer

Fig. 7 2D Nonlinear material model

Fig. 8 Stiffness characteristics of 1D model of (a) the bar, 
and (b) the foundation
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P0 respectively as shown in (Fig. 8). These parameters 
were chosen in such a way that the linear calculation of 
the 2D (or 3D) model was compared to the 1D one, and 
the elastic limits were matched at identical displacements. 

This model will be validated in this article by changing 
the following parameters:

•	 earthquake record (see, Table 1) [19, 20]
•	 soil geometry
•	 soil properties
•	 building geometry (rigid, one-, two-story, and seven 

story buildings) and mass
•	 level of plastification.

Most of our analyses are 2D (as it is very common in 
the literature [7, 10, 21] to prove the concept of lumped 
parameter models); however, to validate our model, also a 
3D analysis is presented.

(We also investigated the possibility of limiting 
only one of the two elastic parameters (κ, EA ), but, as 
expected, both parameters had to be limited to get a good 
match with the 2D or 3D models.)

In the analysis, the damping ratio ξ = 5% is applied.
The response of the 2D (or 3D) model will be compared 

to that of the modified Pap's (1D) model, namely:
•	 the displacement (relative to the bedrock) function at 

the base, and their maximum values
•	 inter-story drifts of the building.

3.1 Finite Element Model
The 2D model was studied in ANSYS Mechanical APDL 
2020 and Plaxis 2D (version 20.04.00790) by applying con-
straints on the vertical displacements. In the analysis, G was 
defined, and Poisson's ratio is v = 0.3. The height gives the 
model's geometry (soil) in the vertical direction, represented 
by h, and the length, l in the horizontal, x-direction. 

For the "infinite" dimension, the length is selected to 
be sufficiently large so that the solution is not affected by 

changes in the length [10]. The earthquake excitation has 
been applied at the bedrock. Note that infinite bars cannot 
be modeled by finite length bars for elastic systems with-
out damping because of the reflections from the bound-
ary. However, when damping is present, a long, finite bar 
can capture the behavior of infinite bars well, as demon-
strated by Pap.

For nonlinear analysis, the linear elastic perfectly plas-
tic model has been employed. The  soil is simulated using 
Ansys's bilinear kinematic hardening model  [15] and the 
Mohr-Coulomb criterion in Plaxis  [21]. Within the linear 
elastic perfectly plastic model, the initial slope of the curve 
corresponds to the material's elastic modulus. Plastic strain 
occurs when the stress surpasses a specified yield threshold.

In the 2D model, the Plane183 element, a higher-order 
2D element with eight nodes, was used in the modeling. 
This element has two degrees of freedom at each node: dis-
placement in the x and y directions [22]. For the 1D case, 
the bar is represented by BEAM188 elements, linear springs 
are simulated using COMBIN14 elements, nonlinear springs 
with COMBIN39 elements, and masses are modeled using 
MASS21 elements. In a few cases, Plaxis 2D was utilized to 
compare Ansys's results, which showed a reasonable match.

3.2 Mesh sensitivity 
The mesh size should be less than one-eighth of the wave-
length related to the maximum frequency component fmax 
of the input wave [23, 24], which is a widely used approach 
in dynamic modeling to assure consistent results. The rec-
ommended mesh size is:

L Tv v
f8 8 8

= =
max

	 (3)

The frequency spectrum of common earthquakes falls 
within the 0.45 Hz to 2.82 Hz range, determined through 
an analysis of 44 far-field records from FEMA  [10]. 
Substituting the minimum velocity of 100 m/s and the max-
imum frequency f = 2.82 Hz gives an average element size 
of 4.43 m. However, all models employ a mesh size ranging 
from 1 m to 2 m, which is significantly smaller than 4.43 m.

4 Validation
First, an infinitely long 50 m height soil layer (Fig. 4) was 
investigated and subjected to eight earthquake records 
listed in Table 1. The infinitely long dimension of the layer 
was replaced in the FE analysis by 1000 m. The results are 
shown in Tables  2–5. In  the four cases, the width of the 
foundation (2b) and the soil stiffness (i.e., the shear wave 

Table 1 Earthquake records used in the analyses [19, 20]

ID Earthquake Name PGA [m/s2] Timestep Δt [s] Length [s]

1 rec6 0.26 0.01 46

2 rec7 0.337 0.01 45.31

3 rec27 0.38 0.005 39.39

4 rec29 3.368 0.02 90.6

5 rec32 0.258 0.01 80

6 rec32.1 0.387 0.0025 20

7 RSN1050 2.26 0.02 19.98

8 rec32.3 4.45 0.01 22.3
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Table 2 Maximum responses of the 2D and 1D models subjected to earthquakes, 2b = 20 m, vs = 100 m/s

Case τmax τc = 100 kN/m2 τc = 75 kN/m2

Record τmax kN/m2 u
D

max
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D
max
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u

u
D

D

max

max
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u
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D

D

max( )

max

� �75
1

1

rec6 125 0.033 0.032 97% 81% 78% 71% 69%

rec7 136 0.037 0.034 92% 79% 77% 66% 70%

rec27 147 0.053 0.052 97% 67% 74% 67% 65%

rec29 185 0.128 0.115 90% 80% 82% 71% 73%

rec32 133 0.091 0.088 96% 85% 88% 66% 65%

rec32.1 115 0.019 0.015 83% 80% 83% 66% 70%

Table 3 Maximum responses of the 2D and 1D models subjected to earthquakes, 2b = 40 m, vs =100 m/s

Case τmax τc = 100 kN/m2 τc = 75 kN/m2

Record τmax kN/m2 u
D
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max
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rec6 113 0.031 0.027 86% 83% 82% 66% 68%

rec7 122 0.034 0.030 88% 82% 83% 68% 69%

rec27 132 0.050 0.045 90% 84% 86% 67% 70%

rec29 167 0.123 0.110 90% 78% 79% 61% 58%

rec32 120 0.091 0.081 89% 83% 84% 70% 69%

Table 4 Maximum responses of the 2D and 1D models subjected to earthquakes, 2b = 20 m, vs = 200 m/s

Case τmax τc = 100 kN/m2 τc = 75 kN/m2

Record τmax kN/m2 u
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rec6 139 0.036 0.031 87% 83% 86% 70% 74%

rec7 140 0.032 0.026 82% 82% 85% 76% 81%

rec27 140 0.035 0.031 88% 88% 88% 71% 74%

rec29 178 0.092 0.080 86% 84% 94% 73% 76%

rec32 191 0.097 0.090 93% 93% 91% 75% 74%

Table 5 Maximum responses of the 2D and 1D models subjected to earthquakes, 2b = 50 m, vs = 250 m/s

Case τmax τc = 100 kN/m2

Record τmax kN/m2 u
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rec6 175 0.028 0.027 97% 77% 76%

rec7 137 0.021 0.019 90% 80% 80%

rec27 186 0.029 0.027 94% 79% 82%

rec29 345 0.060 0.056 94% 70% 74%

rec32.1 172 0.027 0.026 98% 77% 76%
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velocity vs, G vs� � 2 ) were varied, as listed in the table 
captions. An elastic analysis and two elastic-plastic analy-
ses were considered: the plastic shear strains (τc, Fig. 7) of 
the soil were given as 100 and 75 kN/m2, corresponding to 
about 80% and 60% of the maximum elastic shear stresses.

The characteristics of the 1D sub-models were calcu-
lated using the expressions given in Fig. 4. The results for 
the four cases are given in the first four rows of Table 6. 
For the nonlinear analysis κ and EA  are used only below 
80% and 60% of the maximum elastic strains (see Fig. 8). 

The maximum shear stress obtained from the elastic 2D 
FE analysis is given in the second column of Tables 2–5, 
while the maximum displacements (under the middle of 
the foundation) are in the 3rd column. The displacements 
calculated from the 1D model are given in the 4th column, 
while their ratios are presented in the 5th column. In almost 
all cases, the results of the accurate (2D) and approximate 
(1D) calculations are very close to each other. (Note that 
the accuracy of the accelerations is somewhat less good.)

In every case, the plasticity reduces the displacements; 
in the last 2 × 2 columns, the ratios of the plastic and elas-
tic displacements are given; it is clearly shown that the 
decrease in the 1D model is very close to that of the "accu-
rate" 2D model. The results of the time history analyses of 
the 2D and the 1D models are given as illustrative exam-
ples for one particular case in Fig. 9 (a and b).

Now, we investigate the case presented in Table  3; 
the only difference is that the layer has a finite length of 
l = 200 m (Fig. 10(a)). In this case, the simple expressions 
given in Fig. 4 are not applicable; instead, the procedure pre-
sented in [14] - based on the impedance curve – was applied.

The characteristics of the 1D model are given in the 5th 
row of Table 6. Comparisons of the 2D and 1D analyses 
are given in Table 7. 

Next, the same model was considered, but the soil 
characteristic was changed as vs  =  250  m/s. The  calcu-
lated characteristics of the 1D model are given in the 6th 

row of Table  6, the results are presented in the 3rd row 
of Table  7. It is observed that there is good agreement 
between the 2D and 1D solutions.

So far, the structure – following Pap's examples – was 
considered to be a rigid object. Now, our comparison is 
extended to flexible structures. First, a one and a two-
story building with different story stiffness are considered 
(Figs. 10(b) and 10(c)). In the first case, the building can 
be characterized well by one degree of freedom, while two 
degrees of freedom in the second.

It is worthwhile to mention that when modeling the flex-
ible structure (e.g., building), the building has been built 
as a real structure either in the 1D model (see  Fig. 1(d)) 
or in the 2D model (see Figs. 10(b) and 10(c)). (However, 

Table 6 Characteristics of the elastic 1D models used in the validation

case ko × 106 [N/m2] κ × 106 [N/m2] EA × 106 [N] μ × 103 [kg/m] mo × 105 [kg]

→

ωc [1/s] K × 106 [N/m2] η

1 (Table 2) - 4.44 900 45 - 3.14 20 1

2 (Table 3) 8.88 4.44 900 45 9 3.14 28.87 0.69

3 (Table 4) - 1.77 3600 45 - 6.28 80 1

4 (Table 5) 69.39 2.77 5625 45 11.25 7.85 194.35 0.64

5 (Table 7-a) - - - - - 3.68 38.1 0.65

6 (Table 7-b) - - - - - 9.17 229 0.68

7 (Fig. 10, d) 61.6 4013 4200 336 51.6 3.46 4167 0.98

8 (Fig. 13) 14.9 27.44 27.5 1555 8.47 4.2 42.4 0.65

Fig. 9 Comparison of the time history analyses of the 2D and 1D model 
given in Table 5, 1st row, 2b = 50 m, v = 250 m/s, record 6,

a) elastic analysis, b) plastic analysis (τc = 100)

Fig. 10 Finite length soil layer, a) rigid structure, b) one story 
flexible structure and, c) two story structure, d) 3D model with a 

shallow foundation
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a possible simplification is replacing the building with a 
one- or two-degree freedom system that includes springs 
and masses. We found practically no numerical difference 
between the MDF modeling of the building and the sim-
plified modeling.)

The results are given for the one-story and two-story 
buildings in Tables 8 and 9. In all cases, the results of the 
accurate (2D) and approximate (1D) analyses are reason-
ably close to each other.

Fig. 11 illustrates the drift story u2−1 for the – nonlin-
ear analysis - for the first case outlined in Table 8 and 
Fig. 10(b). The drift calculated using the simplified model 
and the direct approach results are plotted with solid and 
dashed lines, respectively. The comparison demonstrates 
that the present model offers a reasonably accurate approx-
imation of the results obtained from the direct 2D analysis.

The method can be expanded in the following exam-
ple to address 3D problems involving shallow foun-
dations. The  problem investigated by [10] and illus-
trated in Fig.  10(d) is analyzed. The problem presented 
involves an object subjected to earthquake record no. 32.3 
(see Table 1). The following parameters have been used, 
h = 50 m, bx = 20 m, by = 40 m, vs = 100 m/s, Lx = 1400 m, 
Ly  =  200  m. The  1D model parameters have been cal-
culated using the procedure – based on the impedance 
curve – mentioned in [10]; these parameters are given in 
the 7th row of Table 6. The displacements are assessed and 
compared at the center of the foundation, specifically at 
the bottom center of the foundation, which corresponds 
to the top level of the soil layer. As illustrated in Fig. 12, 
the solid lines represent the horizontal displacements 
obtained from the direct approach, while the dashed line 

Table 7 Maximum responses of the 2D and 1D models subjected to earthquakes (Fig. 10(a)), l = 200 m:
(a) 2b = 40 m, vs = 100 m/s,(b) 2b = 40 m, vs = 250 m/s

Case τmax τc = 100 kN/m2 τc = 75 kN/m2

Soil Record u
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u
D
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max
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a Rec6 0.023 0.024 106% 79% 78% 63% 60%

Rec32.3 0.127 0.126 99% 77% 75% 64% 62%

b Rec32.3 0.083 0.090 108% 84% 81% 63% 56%

Table 9 Maximum responses of the 2D and 1D models subjected to earthquakes, two-story structure, (Fig. 10(c)),
2b = 20 m, twall = 0.4 m, tslab = 0.2 m, and hstorey =3 m

Case
Linear Storey drift

2nd storey 1st storey Linear Nonlinear τ = 100 kN/m2

Shear Velocity [m/s] Record u2D u1D u1D / u2D u2D u1D u1D / u2D

u1D / u2D u1D / u2D

u2−1 u1−base u2−1 u1−base

200 rec32.3 0.116 0.144 81% 0.113 0.134 84% 120% 86% 83% 91%

100 rec32.3 0.182 0.216 84% 0.180 0.172 105% 81% 103% 96% 111%

100 rec29 0.586 0.552 106% 0.584 0.518 113% 80% 99% 85% 82%

Table 8 Maximum responses of the 2D and 1D models subjected to earthquakes, one-story structure, (Fig. 10(b)),
2b = 20 m, twall = 0.4 m, tslab = 0.2 m, and hstorey = 3 m

Case
Linear Storey drift

1st storey Linear Nonlinear τ = 100 kN/m2

Shear Velocity [m/s] Record u2D u1D u1D / u2D

u1D / u2D u1D / u2D

u1−base u1−base

200 rec32.3 0.110 0.119 93% 103% 105%

100 rec32.3 0.148 0.147 100% 102% 86%

100 rec29 0.576 0.502 115% 102% 117%
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corresponds to the results from the simplified model. 
This  comparison visually highlights the relationship 
between the two methods and their outcomes. The com-
parison reveals that the current model reasonably approx-
imates the outcomes from the direct 3D analysis.

Another 2D example is presented, Fig. 13, presenting 
a common structural system used in buildings, the shear 
wall system. The model consists of a seven-story building 
with a total height of hstr = 28 m, supported by a raft foun-
dation (2b = 50 m wide and 1 m thick). 

Three shear walls (each has bw  =  5  m wide and 
0.5  m  thick) resist the horizontal seismic applied loads. 
The soil domain beneath the structure extends l = 200 m 
in width and h = 50 m in depth with shear wave velocity 
vs = 100 m/s. The 1D model parameters were calculated 
using the impedance-based procedure described in  [10], 
and the results are listed in the 8th row of Table 6.

Displacements are evaluated and compared at the center 
of the foundation base, aligning with the top surface of the 
soil layer. As shown in Fig. 14, solid lines depict horizontal 
displacements from the direct method, while the dashed 
line represents results from the simplified model. It demon-
strates that the simplified model reasonably approximates 
the direct 2D analysis outcomes. Although the simplified 
method produces a smoother curve than the direct method, 
their maximum and minimum values are in close agree-
ment. Furthermore, in the 2D plastic analysis, the maxi-
mum top displacement relative to the bottom is 0.199 m, 
while the maximum displacement of the foundation is 
0.11 m. For comparison, the corresponding values obtained 
from the 1D model are 0.203 m and 0.112 m, respectively, 
indicating good agreement with the 2D result.

Another comparative analysis was also conducted 
for four story structure  (Fig. 13). The results show good 
agreement between the curves predicted by the simplified 
model (solid line) and those obtained from the FEM anal-
ysis (dashed line). See Fig. 15.

Fig. 11 Drift story u2−1 for the first case of Table 8, with vs = 200 m/s,
l = 200 m: 2b = 20 m

Fig. 12 Comparison of the time history analyses of the 3D (Fig. 10(d)) 

and 1D model given in (Table 6, 7th row ), a) elastic analysis,
b) plastic analysis (τc = 100)

Fig. 13 Finite length soil layer with 7 storey building l = 200 m 
h = 50 m

Fig. 14 Comparison of the time history analyses of the 2D (Fig. 13) and 
1D model given in (Table 6, 8th row ), a) elastic analysis,

b) plastic analysis (τc = 100)

Fig. 15 Comparison of the time history analyses of the 2D (4 story-
building) and 1D model; a) elastic analysis, b) plastic analysis (τc = 100)
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5 Discussion
In this paper Pap's model was extended for nonlinear soil 
behavior. Recall that even for elastic behavior the lumped 
mass models can be rather inaccurate, and Pap's simple 
model, which depends on three parameters only, are rec-
ommended to be applied. Since the soil nonlinearity can 
affect the response considerably even in the case of mod-
erate seismicity, our findings that Pap's model can be sim-
ply extended for nonlinear behavior is an important result. 
As a consequence, the 3D (or 2D) nonlinear soil can be 
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We consider that our main finding is the extremely 
small number of parameters needed to prescribe the 
response to a rather complex task. It could be reached due 
to the fact that Pap's model can capture the fundamental 
behavior of the soil. (The problem was solved by a very 
long bar resting on an elastic-plastic foundation; however, 
in the future, we plan to explore other ‒ hopefully more 

efficient ‒ solution techniques). The results were validated 
by several numerical examples, where the soil parame-
ters, geometry, seismicity and the characteristics of the 
buildings were varied.

Although for the practical applications in more general 
cases further research is needed, the enhanced Pap's model 
seems applicable to model the soil even in the case of sig-
nificant plastification. To  further extend its applicability 
and accuracy, future work should focus on several key 
aspects. These include the application of flexible foun-
dation conditions and the influence of stiffness contrast 
between the superstructure and the soil, the incorpora-
tion of additional kinematic fields to better represent the 
behavior of flexible soils, and the evaluation of P-Delta 
effects. Furthermore, the inclusion of rocking mechanisms 
within the model framework.
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