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Abstract

According to the growing trend of aircraft industry, a variety

of different aircrafts exist in the market which varies in types

of use, geometric shape of the wheels and main gear configu-

ration. In this paper, we used LEDFAA software for research

about effect of Airbus and Boeing gear configuration on run-

ways rigid and flexible pavement. Cumulative Damage Factor

(CDF has been calculated for Airbus and Boeing aircrafts in

this research as well. Also for validation of this numerical study,

CDF curves were drawn by using FAARFIELD software. The

effect of gear configuration and lateral distance from centerline

of runway were evaluated and critical zones of runway were de-

tected. This paper confirms AC150 / 5320-16 about B-777; that

canceled airport pavement design in mixed traffic for the Boe-

ing 777 Airplane. In other hand, among Airbus group aircrafts

A - 340 - 500 / 600 have the most damage factor contribution on

flexible and rigid pavements.
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1 Introduction

Nowadays many aircrafts with different weight and gear con-

figuration are landing on airport runways. It is clear that this

difference in airplanes causes different quantity of damage on

the rigid and flexible pavements. In industrial countries, the Air-

port Pavement Management System (APMS) has played a main

role to reduce pavement damage and expense of maintenance

and repairing process [1]. In this case, Federal Aviation Admin-

istration (FAA) studies on experimental models with full scale

testing focusing on the result of making 2D and 3D models by

finite element method that prepared for using aircraft next gener-

ations [2–4]. In this research, LEDFAA is used for evaluation of

gear configuration effects on rigid and flexible pavement dam-

age by FAA method, which is based on Layered Elastic Design

method. This software made by FAA and in this numerical study

its 1.3 version (June 2004) was used. The LEDFAA is capable

to design and analyze rigid and flexible pavement and composite

pavement by FAA method [5]. This software has several capa-

bilities to analyze the cumulative damage factor for any aircraft

in the pavement system. Also FAA Rigid and Flexible Iterative

Elastic Layered Design software (FAARFIELD) is used for de-

tecting critical zones of runway and evaluating the effect of gear

configuration and lateral distance from centerline of runway [6].

This software is a computer program for airport pavement thick-

ness design. It implements both layered elastic based and three-

dimensional finite element-based design procedures developed

by the FAA for new and overlay design of flexible and rigid

pavements. This paper confirms AC150 / 5320 - 16 [7] about the

effect of B-777 in mixed traffic by comparing results from these

softwares.

2 Research History

Landing gear configuration and aircraft gross weight are an

integral part of airfield pavement design and are often used to

characterize pavement strength. Historically, most aircraft used

relatively simple gear geometries such as a single wheel per strut

or two wheels side by side on a landing strut. As aircraft became

larger and heavier, they required additional wheels to prevent in-

dividual wheel loads from introducing excessively high stresses
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into the pavement structure. For economy and efficiency rea-

sons, aircraft manufacturers added more wheels per landing strut

whenever possible. This often led to groups of wheels placed

side-by-side and in tandem configurations. There are many re-

searches about runway pavement damages and effecting differ-

ent aircrafts on it. FAA constructed National Airport Pavement

Test Facility (NAPTF) where the primary objective was to de-

velop new airport pavement design procedures for the next gen-

eration aircraft configured with complex and large loading gears

[8, 9]. Thompson and Garg (1999) introduced an “Engineering

Approach” to determine critical pavement responses under typi-

cal multiple wheel aircraft gear loadings and evaluate wheel load

interaction effects on the flexible pavement responses [8]. Also

in 2004, Erol Tutumluer and Tai Kim, by using different tests

for studying permanent deformation behavior in airport pave-

ment on the A380, B777-300, B747 and other military aircrafts

showed that B777-300 and A380 had most effect to the amount

of rutting in flexible pavements [10]. In 2006, Rodney N.joel, a

member of FAA’s airport engineering board, used FAA’s differ-

ent software such as LEDFAA and FEDFAA. He recognized the

following points by using old airport analysis and planning in

the world. So he developed it for aircraft next generations [11].

Rodney N.joel indicated:

• We should have predicting about airport pavements in the next

years by evaluating widen aircrafts in the next generations and

their damages by using 2D, 3D finite element software. As a

result, the next generations should be bigger and widen.

• With widening aircraft next generations, we should take more

care of the number and arrangement wheels and producers

should choose the best kind of wheel’s geometric arrange-

ment.

Al-Qadi and Wang in 2010 [12], evaluated pavement damage

due to new tire designs. They indicated that the wide-base tire

causes greater fatigue damage and subgrade rutting than the con-

ventional dual-tire assembly does when carrying the same load.

Adil Godiwalla and Dev R.Pokhrel in 2011, studied about air-

port pavement software such as FAARFIELD and LEDFAA1.3.

They indicated effect of gear position and critical stress loca-

tion. They showed FAARFIELD is capable of handling New

Large Aircrafts (NLA) with complex landing gear configuration

including B-777, Airbus A380 and An-225 [13]. In 2011, Mo-

jarrad H, in his PhD thesis indicated that, Aircrafts would apply

significant shear loads on airport pavements. In his study, lower

allowable number of load repetitions was observed for the pave-

ment in the presence of shear loads. Although the observation

was captured more clearly for circular tire imprint, but in case

of full depth asphalt pavement section, presence of shear loads

impacted the pavement response for both circular and elliptical

tire imprints [14]. Shafabakhsh and Kashi in 2012 conducted

a numerical study on the runway pavement [15]. This research

showed that aircraft gear configuration is an effective factor in

the rate of pavement damages. Also among all of the Airbus

aircrafts, A340 - 500 / 600 has more weight distributed to each

wheel, the A340 - 500 / 600 has a dual-tandem belly gear instead

of a dual-wheel belly gear, this aircraft’s arrangement is regu-

lated than other aircraft in Airbus group, and gross weight load

is distributed upon a higher level of the pavement.

3 Layered Elastic Model Assumptions and Inputs

A layered elastic model can compute stresses, strains and de-

flections at any point in a pavement structure resulting from the

application of a surface load. Layered elastic models assume

that each pavement structural layer is homogeneous, isotropic,

and linearly elastic. In other words, it is the same everywhere

and will rebound to its original form once the load is removed.

The origin of layered elastic theory is credited to V.J. Boussinesq

who published his classic work in 1885. In classical mechanics,

solutions to various solid mechanics problems have very well

been established. The most famous one is the Boussinesq solu-

tion for the case of concentrated vertical load acting on the sur-

face of a semi-infinite body. However, in engineering problems

like foundation, road or airport pavement design, solutions to a

multi-layered system are required. Elastic layered analyses have

been easily implemented and widely accepted. Although elas-

tic layered programs have several advantages, they can usually

not give accurate pavement responses. First of all, these meth-

ods assume that all layers are linear elastic but this assumption

makes it difficult to analyze layered system consisting of non-

linear base/subbase and subgrade soil materials. Secondly, all

wheel loads applied on top of the surface layer have to be ax-

isymmetric, which is not true for actual wheel loads. At last,

elastic layered programs assume isotropic material property that

is not realistic for most geomaterials, especially not for unbound

aggregate materials [16, 17]. Limitations like these are hard to

show that realistic pavement responses can be predicted using

elastic layered programs. These difficulties can be overcome

by using the finite element method. On the other hand one of

the limitations of LEDFAA for rigid pavements is the lack of

a direct slab edge stress calculation. Slab interior stress is cal-

culated first, and then converted into edge stress using transfor-

mation functions developed for specific aircraft. Fig. 1 shows

how these inputs relate to a layered elastic model of a pavement

system.

4 Cumulative Damage Factor for flexible and Rigid

Pavement

Cumulative Damage Factor (CDF) is the amount of the struc-

tural fatigue life of a pavement which has been used up. It is ex-

pressed as the ratio of applied load repetitions to allowable load

repetitions to failure. When CDF = 1, the pavement will have

used up all of its fatigue life. When CDF < 1, the pavement will

have some life remaining, and the value of the CDF will give

the fraction of the life used. When CDF > 1, all fatigue life will

have been used up and the pavement will have failed [6].
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Fig. 1. Layered elastic characteristics

For flexible design, the thickness of the layer top of the sub-

grade is adjusted to make the subgrade CDF approximately

equal to one. The current error control is that the design will

terminate when CDF is in the range 0.995 to 1.005. If the layer

next to the subgrade becomes thinner than its specified mini-

mum thickness, the thickness of the layer above is halved, or

set at its minimum thickness, and the procedure continues. If

the CDF is less than one with both of the adjusted layers at

their minimum thicknesses, the CDF is displayed and the de-

sign terminates. This procedure is not intended to optimize a

design. It is intended only to protect from inappropriate input

data. Viscoelastic effects are done in other research and we only

evaluated flexible pavement based on elastic theory [18].

The failure model used to find the number of coverages to

failure for a given vertical strain at the top of the subgrade is

shown in the following equations [19]:

C =

(
0.004

εv

)8.1

when C ≤ 12, 100 (1)

C =

(
0.002428

εv

)14.21

when C > 12, 100 (2)

Where:

C number of coverages to failure

εv vertical strain at the top of the subgrade

Rigid design is the same as flexible design except that CDF is

calculated using the horizontal edge stress at the bottom of the

PCC layer. Coverages Parameter in rigid pavements is consid-

ered as the number of frequency of maximum tensional stresses

which happen under the rigid slab and during the lifetime of

designing. The basic equation used to find the number of cover-

ages to failure (C) for given concrete strength (R) and working

stress for design (δ) is shown in the following [20]:

S CI =

R
δ
− 0.2967 − (0.3881 + 0.000039 × S CI) log C

0.002269
(3)

Where R is concrete flexural strength (MPa), σ is the com-

puted concrete tensile strength (MPa), S CI (Structural Condi-

tion Index) is defined as the structural component of PCI. This

parameter is range of zero to 100. The suggested amount is 80

according to the FAA standard [21]. In these definitions, failure

means defect in a particular structural failure mode according to

the assumptions and definitions on which the design procedures

are based. A value of CDF greater than one does not necessar-

ily mean that the pavement will no longer support traffic, but that

it will have failed according to the definition of failure used in

the design procedure, and within the constraints of uncertainties

in material property assumptions, etc. Nevertheless, the thick-

ness design is based on the assumption that failure occurs when

CDF = 1. In this section, first we evaluate the contribution of

CDF for aircrafts in Airbus and Boeing groups. Then we will

have a case study in a sample airport with mixed traffic and sim-

ilar assumptions. In this case, we will first design airport flex-

ible and rigid pavement with similar assumptions for all of the

Airbus and Boeing, then the results and diagrams about CDF

contribution for aircrafts will be shown in the next sections.

5 CDF Contribution for Sample Airport with Mixed Traf-

fic by LEDFAA software

As shown in section 4 about CDF rate calculated by LED-

FAA and FAARFIELD softwares, in this section, with using re-

sults of many separate Numerical studies [15], finally among 11

models of Airbus and 16 model of Boeing in software, 15 mod-

els which had a highest CDF rate are chosen for mixed traffic

in sample airport (sample airport only was supposed for numeri-
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cal studies). Also annual departure in first year is assumed 1200,

and percent annual growth is assumed 5%. Traffic data and other

design assumptions for sample airport are shown in Table 1:

Design assumptions about rigid and flexible pavement, layers

material and structural data are shown in Table 2.

Where:

PCC S ur f ace Portland cement concrete surface

P - 304 CT B Cement treated base course

P - 209 Cr Ag Crushed aggregate subbase course

P - 401 AC Asphalt concrete surface.

P - 401 St Stabilized bases for flexible pavement

k Modulus of subgrade reaction.

R Portland cement concrete flexural strength

CBR California bearing ratio

For flexible example, a base thickness of 203.2 mm was fi-

nally selected. After the final design run, the subbase thickness

of 459.7 mm gave a total pavement thickness of 789.9 inches.

These results show that for sample airfield with this mixed traf-

fic, the flexible pavement thickness is more than rigid pavement.

After the design process for 15 aircraft in sample aircraft mixed

traffic, the results are shown in Fig. 2 which is a calculation of

CDF rate in rigid and flexible pavements.

As shown in Fig. 2, A340 - 500 / 600 has 25% and B777 -

300 ER has 19% of the total CDF in rigid pavement. Also

for flexible pavement B777 - 300 ER has the highest rates with

42% of total CDF. We found that between all of the Airbus

and Boeing aircrafts, B777 - 300 ER has the highest CDF rate

in flexible pavement because this aircraft have special gear con-

figuration [22]. In the next section we will study the reasons.

A further distinction between the conventional FAA and LED-

FAA’s method of treating traffic is that the pass-to-coverage ra-

tios are different. FAA’s are based on the overlap of tire contact

areas on the pavement surface whereas LEDFAA considers the

overlapping effects of a wider ‘effective’ tire width at subgrade

level and also considers the depth to subgrade relative to axle

spacing when deciding the number of effective strain repetitions.

However, because LEDFAA computations are framed in terms

of aircraft departures rather than coverage, the pass-to-coverage

ratios are not accessible to the user. Thus LEDFAA processes

the traffic in fundamentally different ways to those used by the

FAA conventional design method. As stated earlier it is condi-

tioned to produce similar pavement thicknesses for typical traf-

fic mixes. Consequently the use of LEDFAA for single aircraft

assessments is problematic and may produce conservative pave-

ment thicknesses, as discussed in the LEDFAA manual.

6 Evaluation of aircraft individual wheel load

Aircraft gear configuration is an effective factor in the rate

of pavement damages on airfield. Weighty aircrafts gear ar-

rangement leads to distribution upon a higher level of subgrade.

The results show that whatever wheels arrangement is wider, the

CDF for aircraft is lesser, and vice versa. As shown in Fig. 2

there is little difference between rigid and flexible pavements

for Airbus group CDF rate. This difference is evaluated at two

points:

• Among all of the Airbus aircrafts, A340 - 500 / 600 has more

weight distributed on each wheels. Because its weight is high

and wheels number is low, that leads to high CDF contribu-

tion among other aircrafts in Airbus group.

• Main gear arrangement for A - 340 - 500 / 600 is triple dual

tandems and total number of wheels for this aircraft is 12.

This aircraft’s arrangement is regulated than other aircraft in

Airbus group, and gross weight load is distributed upon a

higher level of the pavement, so that causes to adjust the load-

ing; also during aircraft movement in runway and taxiway,

only two wheels lead to rutting in pavement. That this factor

causes CDF contribution for this aircraft in rigid and flexible

pavement has not differed.

Fig. 1 also shows B777 - 300 ER has a most CDF rate of flex-

ible pavement for sample airport mixed traffic, but this rate is

divided into half in rigid pavement. This difference was made

by B777 - 300 ER wheels arrangement, because this model has

triple dual tandem, as all of 12 wheels are only in 4 path strip

in the pavement surface. This arrangement is evaluated at two

points:

• The tire contact area is only in 4 path strip on the pavement

surface. This reason causes of increasing damage in a special

section of pavement surface.

• In the design process by LEDFAA with assumed material

modulus, thickness of Asphalt Concrete surface in flexible

pavement is 127 mm and thickness of Portland Cement Con-

crete surface in rigid pavement is 443.6 mm, therefore, rigid

pavement’s high thickness and rigidity cause damages rate

for B777 - 300 ER of flexible pavement to be more than that

on rigid pavement. Also gross weight load distribution upon

rigid pavement is on wide levels of pavement; and this factor

causes to increasing CDF rate for B - 777 - 300 ER on flexible

pavement.

In Fig. 3 the Airbus and Boeing group aircrafts weight and

total wheels are categorized, by using this Figure we understand

the effect of weight, total wheels and wheels arrangement on

pavement damages.

Fig. 3 represents B747 - 400 ER to have more gross weight

and individual wheel load than B777 - 300 ER, however com-

pared to B777 - 300 ER with its linear arrangement, this aircraft

proved to lead less damage because of its suitable wheels ar-

rangement. Tire contact area on the pavement is only in 4 tapes

of path on the pavement surface, this cause increased damage in

a special section of pavement surface.

Fig. 3 also represents A380 - 800 and A380 - 800 F to have

most gross weight in other aircrafts with any of them not to have

a maximum CDF rate. Therefore, mere gross weight cannot
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Tab. 1. Traffic Data and Design Assumption for Sample Airport

Aircraft

Model

Gross

Weight (tons)

Tire Pres-

sure (kpa)

Annual

Departure

Annual

Growth (%)
Design Life

Percent

Gross

Weight on

Gear

B - 747 - 200 377.84 1379 1200 5 20 95

B - 747 - 400 395.98 1379 1200 5 20 95

B - 747 -

400 ER
414.12 1586 1200 5 20 95

B - 767 -

300 ER
185.52 1379 1200 5 20 47.5

B - 767 -

400 ER
204.57 1482 1200 5 20 47.5

B - 777 - 200 243.58 1276 1200 5 20 47.5

B - 777 -

200 ER
287.80 1482 1200 5 20 47.5

B - 777 - 300 300.27 1482 1200 5 20 47.5

B - 777 -

300 ER
341.10 1503 1200 5 20 47.5

A300 - 600 170.09 1331 1200 5 20 47.5

A300 - 600 -

opt
170.09 1110 1200 5 20 47.5

A330 212.73 1379 1200 5 20 47.5

A - 340 -

500 / 600
366.2 1572 1200 5 20 32.9

A - 340 -

500 / 600 Belly
366.2 1531 1200 5 20 29.3

A380 - 800 562 1338 1200 5 20 95.0

A380 - 800 F 592 1358 1200 5 20 95.0

Tab. 2. Design Results by LEDFAA Software for Rigid and Flexible Pavement

Rigid Flexible

Layer Material Thickness (mm)
Modulus or

R (MPa)
Layer Material Thickness (mm)

Modulus or

R (MPa)

PCC Surface 443.6 4.83
P - 401 AC

Surface
127 1,378.95

P - 304 CT B 152.4 3,447.38 P - 401 St (flex) 203.2 2,757.90

P - 209 Cr Ag 152.4 244.27 P - 209 Cr Ag 459.7 389.42

Subgrade k = 38.38 103.42 Subgrade CBR = 10 103.42

Total thickness to the top of the subgrade t = 748.4 mm Total thickness to the top of the subgrade t = 789.9 mm
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Fig. 2. Comparison CDF Rate in Sample Airfield with Mixed Traffic

Fig. 3. Gross Weight and Total Wheels for Airbus and Boeing Aircraft in Mixed Traffic

Per. Pol. Civil Eng.90 Gholam Ali Shafabakhsh, Ehsan Kashi



make effect with wheels arrangement type and total number of

wheels as effective factors in the CDF rate. Thus when we have

aircrafts gross weight and number of wheels for aircrafts, capa-

ble to determine individual wheel load for Airbus and Boeing

aircrafts, this work was done and shown in Fig. 4.

Figs. 3 and 4 show the A380 - 800 with 20 wheels and

592 tons weight which is balanced and divided on its wheels,

with each wheel supporting 29.6 tons. This number for A340 -

500 / 600 with 12 wheels is 30.5 tons, thus in comparing between

weight and individual wheel load for these two aircrafts, we dis-

covered the rate of load transferring in pavement by any wheels

in A340 - 500 / 600 to be more than that in A380 - 800, which

that is the lead to increase the CDF rate for A340 - 500 / 600.

7 Study of the Effects of Wheel Configuration and

FAARFIELD software results

To investigate wheel load interaction, three sets of axle con-

figuration, i.e., single, tandem, and triad, was investigated. The

stress distributions caused by the adjacent load in a tandem con-

figuration is superimposed yielding a different stress distribu-

tion caused by adjacent wheel. Due to the close spacing be-

tween axles/wheels, the critical pavement responses under mul-

tiple loads are different from those under a single load. Even if

the passage of each set of multiple loads is assumed to be one

repetition, the damage caused by single axle would not be the

same as that caused by tandem or triad axle. The analyses in-

dicate that the primary response parameters of pavement caused

by different load configurations were substantially different for

each.

For example, B - 777 - 300 ER has Triple Dual Tandem (TDT)

and its wheels arrangement shape leads to wheel loading in a

thin width of pavement surface and have engendered failures

such rutting and cracks and increasing rate intensity of making

damage in flexible pavement. And when the thickness of asphalt

concrete surface in flexible pavement is low, it causes increasing

damage rate in this aircraft. Pavement application is load distri-

bution upon a higher level of subgrade that is larger than levels

of wheels bearing area. Load distribution is different in flexible

and rigid pavement in the Layered Elastic Design method; this

load distribution in rigid pavement is larger than flexible pave-

ment. Therefore, we have a most CDF rate in mixed traffic for

flexible pavement.

In the rigid pavement, the CDF rate for A340 - 500 / 600 is

more than all of the Airbus and Boeing aircrafts, because of air-

craft gross weight distribution on wheels. Also for this model

as shown in Fig. 4 (c), 66% of weight supports by main gear

and 33% of weight supports by nose gears. Also in Fig. 4 four

aircrafts gear arrangement is shown.

Some Airbus and Boeing aircraft’s main gear configuration

are shown in Fig. 5. Certain airplanes with D or 2D belly gear

(A340 series) are treated as two separate airplanes for design,

a two-gear 2D airplane (wing gear), and a single-gear D or 2D

airplane (body gear). For example, adding an A340 - 500 / 600 to

the design list, automatically place the two airplanes for design

in the list. In Fig. 5, 3D-Finite Element meshes for various gear

configurations are shown.

All aircraft are grouped into one of the four categories shown

in Fig. 6. Since the same 3D-FE mesh is used for all aircraft

gears within a given category, the 3D-FE process needs to be

called only once for each category, not once for each aircraft.

Once the stress is computed for the first aircraft in the group,

stresses for remaining aircraft are computed by backcalculation

using the already decomposed stiffness matrix, a much less time

consuming process [25].

Same as the previous section, 15 model aircraft which had a

highest CDF rate are chosen for mixed traffic in sample airport.

Also annual departure in first year is assumed 1200, and percent

annual growth is assumed 5%. CDF diagram and distance from

centerline for each aircraft on rigid and flexible pavements are

shown in Fig. 7.

According to Fig. 7, B - 777 - 300 ER has the highest CDF

rate among other aircrafts, and this is the same for both flexi-

ble and rigid pavements. Also A340 - 500 / 600 has the second

highest CDF rate among other aircrafts in both flexible and rigid

pavements.

Results from FAARFIELD software related to flexible pave-

ment, show that these results are similar to LEDFAA software

results, but there are visible difference in rigid pavement. Un-

like the flexible pavement, B777 - 300 ER has the highest CDF

rate among other aircrafts. The reasons for this difference are

discussed in the following:

• FAARFIELD implements both layered elastic based and

three-dimensional finite element-based design procedures.

• Designs for new generation airplanes having 3D landing

gears, such as the Boeing B777 and Airbus A380 series,

were not covered by the previous design procedures. AC

150 / 5320 - 6E, in conjunction with FAARFIELD, provides

the necessary information for thickness design when 3D and

complex airplane gears are included in the airplane mix.

• Rigid design is the same flexible design except that CDF is

calculated using the horizontal edge stress at the bottom of

the PCC layer

8 Conclusions

The programs LEDFAA and FAARFIELD, recently intro-

duced into pavement design practice, have many features in

common but differ in some respects. According to Fig. 2, in the

rigid pavement, the CDF rate for A340 - 500 / 600 is more than

all of the Airbus and Boeing aircrafts. It is because of aircraft

gross weight distribution on wheels and for any wheel having

30.5 tons. Also for this model 66% of the weight is supported

by main gear and 33% of weight by nose gears. On the other

hand, According to Fig. 7, B - 777 - 300 ER has the highest CDF

rate among other aircrafts, and this is same for both flexible and
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Fig. 4. Individual Wheel Load for Airbus and Boeing Aircraft in Mixed Traffic

(a) 2D/3D2 - Two Dual Wheels in Tandem Main (b) 3D - Three Dual Wheels in Tandem Main

Gear/Three Dual Wheels in Tandem Body Gear Gear with Dual Wheel Nose Gear, Boeing B - 777

with Dual wheel Nose Gear, Airbus A380

(c) 2D/2D1 Two Dual Wheels in Tandem Main (d) 2D/2D2 - Two Dual Wheels in Tandem Main

Gear/Two Dual Wheels in Tandem Body Gear with Gear/Two Dual Wheels in Tandem Body Gear with

Dual Wheel Nose Gear, Airbus A340 - 500 / 600 Dual Wheel Nose Gear, Boeing B - 747

Fig. 5. Wheels Number and Geometric Arrangement for Some Airbus and Boeing Aircrafts [23].
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Fig. 6. 3D-FE Meshes for Various Gear Configurations [24].

Fig. 7. FAARFIELD CDF Rate Diagram for Aircraft Mixed Traffic Flexible and Rigid pavement

rigid pavements. A340 - 500 / 600 has the second highest CDF

rate among other aircrafts in both flexible and rigid pavements.

This difference shows that LEDFAA software focuses on indi-

vidual wheel load, and mainly aircrafts with the highest individ-

ual wheel load have a high CDF rate as shown in Fig. 2. Also,

as shown in previous, FAARFIELD software implements both

layered elastic based and three-dimensional finite element-based

design procedures developed by the Federal Aviation Adminis-

tration (FAA) for new and overlay design of flexible and rigid

pavements and 3D-FE mesh is used for all aircraft gears.

Many research documents use of 3D finite element applica-

tion for predicting mechanical behavior and pavement perfor-

mance subjected to various traffic factors. Different axle config-

uration, tire imprint areas and inflation pressure are investigated

here to analyze the considerable impact on pavement damage

initiation from fatigue and permanent deformation point of view.

In this study, rigid and flexible pavement modeling is done using

FAA software. Models in this paper are evaluated by LEDFAA

and FAARFIELD software. For more analysis in complex gear

configuration, we need to use FE method to determining stress

and strain on all pavement layers. In the other hand, a case study

on airport pavement design needs to full scale test to validating
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FE result, it usually needs many facilities and testing tools, also

full scale study is very expensive. It is hoped this happening in

the near future.

The present research has an effective role in the Airport Pave-

ment Management System as it cognizes about any aircraft dis-

tribution in CDF rate. It helps designers to manage the airfield

pavement and to increase the pavement life. Obviously for gen-

eralization of the results there should be more study on aircraft

group with different condition until this numeral study be nearer

to full scale tests.

Advisory Circular AC 150 / 5320 - 16 in airport pavement de-

sign for the Boeing 777 has been canceled and the layered elas-

tic based design procedures implemented in LEDFAA for that

advisory circular have been incorporated in Change 3 of AC

150 / 5320 - 6D Airport Pavement Design and Evaluation. Ver-

sion 1.2 of LEDFAA has also been canceled and is replaced by

version 1.3. Version 1.3 is approved for use in all applications

where version 1.2 is applicable and may also be used for designs

in which the aircraft mix does not include a Boeing 777, or other

aircraft with six-wheel landing gears.
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