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Abstract

Shallow footings are generally designed as square, rectangu-

lar, strip, circular or ring in geotechnical engineering. In some

cases, different shallow footing geometries (irregular footing ge-

ometries) also can be selected because of the static, architec-

tural and economical reasons. Multi-edge shallow footings are

irregular shaped footings having the number of the edges and

sides greater than four. They are used to transmit the loads from

the irregular shaped structures to the underlying soils safely and

economically. The study presented herein describes the use of

artificial neural networks (ANNs) and multi-linear regression

model (MLR) for prediction of ultimate loads of multi-edge shal-

low footings. The data used in running of network models have

been obtained from extensive series of laboratory model tests.

The parameters investigated are the footing width, the footing

length and the density of sand soil. A total of fifty tests were

performed using the parameters of the footing geometry (H, +,

T and square shaped), the footing size and the soil type (loose

sand, dense sand) on the bearing capacity characteristics. The

results of the experimental study proved that the soil density and

the footing size had considerable effects on the load of and the

ANN model serves as simple and reliable tool for predicting the

behavior of the multi-edge footings.
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1 Introduction

Estimation of the bearing capacity and settlement of shal-

low footings is an important task in geotechnical engineering.

Proper estimation results in economical and reasonable footing

design. It is known that many investigations have been car-

ried out on strip, square, circular and ring footings to evalu-

ate their bearing capacities. However, the bearing capacity and

settlement of shallow footings with unordinary geometries has

been less investigated.In some cases, different shallow footing

geometries (irregular footing geometries) also can be selected

because of the static, architectural and economical reasons. For

example, some machine footings may be categorized unordinary

since they may have holes to provide access to internal parts of

machine. The bearing capacity of such footings may not be cal-

culated using traditional closed-form equations. Another exam-

ple can be given in offshore engineering where structures have

to sustain large lateral loads and moments produced by environ-

mental conditions, skirt footings may be used for bearing capac-

ity improvement. This is achieved by adding vertical plates be-

neath the foundation raft. These skirts are expected to constrain

the soil between them and thereby improve foundation perfor-

mance equivalent to that a foundation embedded to the depth

of the skirt tips. There are different investigations to explain be-

havior of skirted-foundations [3,4,37,40]. Shell-footings can be

assumed as another type of footings. Shells in modern footings

engineering however are still newcomer although ceiling-shells

have been known since long ago. However, some major differ-

ences like buckling, weight loads and thickness, distinguishes

analysis and design of these two shells from each other. Shell

footings are economical and have greater load carrying capacity

compared with flat shallow footings. Shell footings are con-

structed in various geometries such as conical, pyramidal, hy-

per and spherical shapes [26]. Ghazavi and Hadiani [13] carried

out experimental laboratory tests on model footings with various

geometries. In their study, they estimated the bearing capacity

of multi-edge footings using an empirical approach based on

experimental data. Cross-shape, H-shape and T-shape footings

have been modeled and loaded until the samples fail. Ghaz-

avi and Hadiani [13] concluded that multi-edge foundations may
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have better performance than a square-shape foundation with the

same width. Moreover some empirical expressions were pre-

sented to show correlation between these footings and square

footings of the same width. Ghazavi and Mokhtari [14] present

a numerical investigation on the behavior of irregular shallow

footings for observing the displacement field under the footings.

For this purpose, FLAC 3D software has been used for their

analysis. They concluded that there is not a distinguishing dif-

ference between bearing capacity of multi-edge foundations and

square foundation when they are of the same area.

Artificial neural networks are a form of artificial intelligence;

try to simulate the behaviour of the human brain and nervous

system. They have the ability to relate between the input data

and corresponding output data which can be defined depend-

ing on single or multiple parameters for solving a linear or non-

linear problem. In the recent years, the use of artificial neu-

ral networks has increased in geotechnical engineering. Artifi-

cial neural networks have been applied in many geotechnical

engineering problems successfully such as pile capacity, set-

tlement of foundations, soil properties and behaviour, lique-

faction, earth retaining structures, slope stability, tunnels and

underground openings. Comprehensive information about the

applications mentioned above can be found in the literature

[2, 6, 7, 12, 20, 21, 24, 25, 27, 30, 31, 33, 34, 39].

The study presented herein describes the use of artificial neu-

ral networks (ANNs) and multi-linear regression model (MLR)

for prediction of bearing capacity of multi-edge shallow foot-

ings rested on both loose and dense sand soils. The data used

in running of network models have been obtained from exten-

sive series of laboratory model tests. A total of fifty tests were

performed using the parameters of the footing geometry (H, +,

T and square shaped), the footing size and the soil type (loose

sand, dense sand) on the bearing capacity characteristics. The

findings will help in better understanding of the multi-edge shal-

low footings design with different soil density and with different

footing geometry and size. It is expected that the information

presented in this study will provide a contribution to the liter-

ature results and will be an alternative source for design and

applications for geotechnical engineers. This will result in de-

crease in cost of construction and save simplicity and time for

the engineer, the contractor and the owner of construction.

2 Geometric parameters investigated

Fig. 1 shows the geometry and loading system of the model

multi-edge footings considered in this investigation. The load-

ings were conducted with four different shaped and 25 different

sized footings. The geometries of the footings are given in Ta-

ble 1. Similar model test configurations have been performed

both for loose and dense sands.

3 Test equipment and materials

The experimental program was carried out using the facility

in the Geotechnical Laboratory of the Civil Engineering De-

partment of the Mustafa Kemal University, Iskenderun, Hatay,

Turkey. The facility and a typical model are shown in Fig. 2 and

Fig. 3.

3.1 Test Tank

Tests were conducted in a steel tank with dimensions 0.7 m

(length) 0.5 m (width) 0.5 m (depth). The bottom and vertical

edges of the tank were stiffened using angle sections to avoid

lateral yielding during soil placement and loading of the model

footing. Two side walls of the tank consist of 10 mm-thick glass

plate and the other sides consist of 3 mm-steel plate. Therefore

the inside walls of the tank were enough smooth to minimize

side friction. The boundary distances were greater than the foot-

ing length, width and depth, and during the tests it was observed

that the extent of failure zones was not more than the footing

geometry, the frictional effect was insignificant to affect the re-

sults of model tests. Static vertical loads were applied to the

model foundations by an electrically-operated mechanical jack

attached to a loading frame located above the tank. Load and

displacement measurements were taken using a pressure cell and

two LVTD’s installed between the jack and the model footing.

3.2 Model Footings

Loading tests were carried out on four different model rigid

foundations fabricated from mild steel. All models had thick-

nesses of 10 mm. Typical model geometries of the footings are

shown in Fig. 1, above.

3.3 Test Medium

Uniform, clean, fine sand obtained from the Ceyhan River

bed was used for the model tests. Laboratory tests were con-

ducted on representative sand samples for gradation, specific

gravity, maximum and minimum densities and strength param-

eters. These properties are summarized in Table 2. The parti-

cle size distribution of this sand is shown in Fig. 4. The model

tests were conducted on loose sand and dense sand conditions.

The angle of shearing resistances of the loose and dense sand

(Dr = 75%) at dry unit weights of 16.65 kN/m3 and 17.11 kN/m3

for normal pressures of 50, 100 and 200 kPa were determined by

direct-shear testing. The measured average peak friction angles

were 36°and 42°for loose and dense sands, respectively.

4 Experimental procedures

4.1 Preparation of the Sand Bed

The sand bed was prepared up to the base level of the model

footings in layers 50 mm thick. Each layer was compacted by

a hand-held vibratory compactor. After the compaction of each

sand layer, the next lift height was controlled using scaled lines

on the glass plates of the test pit. After bed preparation, the sand

was carefully leveled in the areas directly beneath the footing.

This was to ensure that the model footing had full contact with

the sand and that the load applied to the foundation was verti-

cal (normal). The model footing tests were performed with the
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Fig. 1. Strip footings: (a) plan view; (b) elevation

Tab. 1. The geometries of the footings used in the tests

Footing Type No of Footing B x L [cm]

+ Shaped 7
3x10 ; 4x12.5 ; 3x15 ; 4x15 ; 5x15 ;

6x15 ; 7x15

H Shaped 5 3x10 ; 4x12.5 ; 4x15 ; 5x15 ; 6x15

T Shaped 7
3x10 ; 4x12.5 ; 3x15 ; 4x15 ; 5x15 ;

6x15 ; 7x15

Square Shaped 6
5x5 ; 10x10 ; 15x15 ; 20x20 ;

25x25 ; 30x30

(a) (b)

Fig. 2. Test setup: (a) overview, (b) footing
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Fig. 3. General layout of apparatus for model test: (a) elevation; (b) plan view

Fig. 4. Particle size distribution of test sand
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Tab. 2. Properties of sand beds

Property Value

Coarse sand fraction (%) 0.00

Medium sand fraction (%) 65.00

Fine sand fraction (%) 35.00

D10 (mm) 0.13

D30 (mm) 0.28

D60 (mm) 0.58

Uniformity coefficient, Cu 4.46

Coefficient of curvature, Cc 1.04

Specific gravity 2.75

Maximum dry unit weight (kN/m3) 17.11

Minimum dry unit weight (kN/m3) 15.44

Dry unit weights during model tests (kN/m3)

Loose Sand 15.44

Dense Sand (Dr = 75%) 16.65

Cohesion, c (kPa) 0.00

The angle of shearing resistance of the sand, ϕ (degrees)

Loose sand 36.00

Dense Sand 42.00

Classification (USCS) SP

Note: USCS = Unified Soil Classification System

sand at unit weights of 15.44 kN/m3 and 16.65 kN/m3. To main-

tain the consistency of in-place density throughout the test pit,

the same compactive effort was applied on each layer. The dif-

ference in densities measured was found to be less than 1%. In

all tests the minimum depth of sand below the base of the model

was 0.45 m. After completion of each test, the test pit was ex-

cavated to a depth of 1.5 B beneath the footing. This depth was

chosen since the stress distribution calculated from the computer

program [5] dissipates to effectively zero at a depth of about

1.5 B below the footing.

4.2 Model Tests

The model footing was placed on the surface of the sand bed

at predetermined locations in the test pit. Vertical compressive

load was gradually applied to the model footing by means of a

mechanical jack supported against a reaction beam. Then the

load was measured using a calibrated pressure cell. A ball bear-

ing was positioned between the proving ring and the footing

model to ensure that no extraneous moment was applied to the

footing. Constant load increment was maintained until the foot-

ing settlement had stabilised. Settlements of the footing were

measured using calibrated two LVDT’s (Novotechnik TYP TR

50) placed on either side of the footing as shown in Fig. 2. For

each test, load–settlement readings were recorded by a sixteen-

channel data logger unit (MM700 series Autonomous Data Ac-

quisition Unit) and converted to produce values of settlement

at ground level and load using Geotechnical Software-DS7 on

a PC. The tests were continued until the applied vertical load

clearly reduced or a considerable settlement of the footing re-

sulted from a relatively small increase of vertical load. At the

end of each test, the sand was carefully excavated.

In this study, four series of tests were conducted on the model

footings. The details of the tests are given in Table 3.

Tab. 3. Details of model tests

Test Series Footing Type Soil Condition Number of Test

I + Shaped
Loose 7

Dense 7

II H Shaped
Loose 5

Dense 5

III T Shaped
Loose 7

Dense 7

IV Square Shaped
Loose 6

Dense 6

5 Results and discussion

5.1 Interpretation of Test Results

Generally, the type of failure in sandy soil was observed as

general shear failure. In this type of failure a peak value of Qu is

clearly defined in the curve of settlement against load (Fig. 5).

Fig. 5. General shear failure

6 Test Series I: Tests on + Shaped Footings

The effects of footing size and soil density on + shaped foot-

ings were investigated in Test Series I. A total of 14 tests have

been carried out using seven different footing sizes reported in

Table 1. The load-settlement curves shown in Fig. 6 indicated

that the loads increase with an increase in footing size both for

loose and dense sand cases. Similarly, for a constant settlement

value, the loads of dense sand are greater than that of loose sand.

The formation in failure of footings occur symmetrical failure

surfaces at both sides of the footings. The heave zones obtained

during the tests are symmetrical both for loose and dense sands.

For the loose sands at the failure stages, the loads and settle-

ments remain almost constant. On the other hand, for the dense

sands at the failure stages, the loads start to decrease while set-

tlements increase.

The relationships between ultimate load (Qu) - ultimate bear-

ing capacity (qu) and footing area (A) are shown in Fig. 7.
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(a) (b)

Fig. 6. Load settlement curves of + shaped footings for a) loose sand and b) dense sand

As seen that the Qu and qu values increase with an increase

in footing area in both loose and dense sands. While foot-

ing area increases from 36 cm2 (B x L = 3 x 10 cm) to 161 cm2

(B x L = 7 x 15 cm), the ultimate loads increases about 8.3 and

6.0 times in loose and dense sand, respectively. Similarly, for the

footing with dimensions of B x L = 7 x 15 cm, the qu increases

62 kPa to 252 kPa while the sand gets dense. Generally, the sim-

ilar figures are obtained for loose and dense sands.

6.1 Test series II: Tests on H Shaped Footings

In the Test Series II, the carrying loads and the bearing ca-

pacities were investigated for H shaped footings. A total of

10 tests have been carried out using five different footing sizes

changing from B x L = 3 x 10 cm to B x L = 6 x 15 cm, as listed in

Table 1. Fig. 8 shows the load-settlement plots for loose and

dense sand cases. As seen from the figure that the loads increase

with an increase in footing size. Similar to the + shaped foot-

ings, for a constant settlement value, the loads of dense sand are

greater than that of loose sand. For the case of B x L = 5 x 15 cm

and s = 5.0 mm, the loads measured are 1.18 kN and 3.24 kN for

loose and dense sands, respectively. Because of the symmetrical

shape of the H shaped footing, the failure surfaces obtained are

also symmetric.

Fig 9 presents the Qu and qu changes with A. As seen that

the Qu and qu values increase with an increase in footing area in

both loose and dense sands especially for smaller footing sizes.

These values are derived using a method explained in Section

5.1, above. The plots start to have almost horizontal shape for

the A values of around 200 cm2 and greater.

7 Test series III: Tests on T Shaped Footings

In this series of the test, a total of 14 tests have been

carried out using seven different footing sizes changing from

B x L = 3 x 10 cm to B x L = 7 x 15 cm (see, Table 1) to investi-

gate the effects of footing size and soil density on T shaped foot-

ings. As seen from the Fig. 10 that the loads applied increases

with an increase in footing size both for loose and dense sand

cases. It is also expected that, for a constant settlement value,

the loads of dense sand are greater than that of loose sand. For

the case of B x L = 7 x 15 cm and s = 5.0 mm, the loads measured

are 0.91 kN and 5.88 kN for loose and dense sands, respectively.

Similar to the + and H shaped footings, for the loose sands at the

failure stages, the loads and settlements remain almost constant

and for the dense sands at the failure stages, the loads start to de-

crease while settlements increase. The centric load was applied

on the center of gravity and therefore the heave zones concen-

trations occurred at the head of the T shaped footing both for

loose and dense sands.

The plots of ultimate load and ultimate bearing capacity with

footing area are shown in Fig. 11. The Qu and qu values in-

crease with an increase in footing area in both loose and dense

sands, especially for smaller footing area. For the value of

A≈ 140 cm2, there is not a distinguishing difference in Qu and

qu values. Similar to the other types of footings, the soil den-

sity has an important effect. For a same footing area such that

B x L = 7 x 15 cm, the Qu and qu values are, 0.99 kN - 61.49 kPa

and 5.92 kN - 367.83 kPa for the loose and dense sands, respec-

tively.

8 Test series IV: Tests on Square Shaped Footings

In this Test Series IV, the carrying loads and the bearing ca-

pacities of square shaped footings rested on loose and dense

soils were investigated. A total of 12 tests have been performed

using six different footing widths of B = 5; 10; 15; 20; 25 and

30 cm. Fig. 12 shows the load-settlement curves for loose and

dense sand cases. It is obviously seen that the loads increase

with an increase in footing size and for a constant settlement

value; the loads of dense sand are greater than that of loose

sand. For the case of B x L = 15 x 15 cm and s = 5.0 mm, the

loads measured are 1.57 kN and 5.03 kN for loose and dense
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(a) Load (b) Bearing capacity

Fig. 7. Ultimate values of + shaped footings for loose and dense sands

(a) (b)

Fig. 8. Load settlement curves of H shaped footings for a) loose sand and b) dense sand

(a) Load (b) Bearing capacity

Fig. 9. Ultimate values of H shaped footings for loose and dense sands
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(a) (b)

Fig. 10. Load settlement curves of T shaped footings for a) loose sand and b) dense sand

(a) Load (b) Bearing capacity

Fig. 11. Ultimate values of T shaped footings for loose and dense sands

sands, respectively. Similar to the + and H shaped footings,

the symmetrical failure surfaces and therefore the symmetrical

heave zones were obtained.

Fig. 13 shows the changes of Qu and quaccording to a.

As seen from the Fig. 13(a) that the Qu values increase with

an increase in footing area in both loose and dense sands.

For example, the calculated Qu values for B x L = 10 cm and

B x L = 30 cm are [0.60 kN-loose; 1.32 kN-dense] and [5.22 kN-

loose; 13.28 kN-dense], respectively. It is also seen that the soil

density has an important effect on the load carried. When the

ultimate bearing capacities of the square footings are consid-

ered, it is concluded that there is not a distinguishing difference

between bearing capacity of square footings, especially for the

larger footing sizes. Bearing capacities for the loose sand case

are obtained approximately 73.38 kPa; 65.80 kPa; 56.78 kPa and

57.99 kPa for 15 cm; 20 cm; 25 cm and 30 cm widths, respec-

tively.

Table 4 shows the shape effect of the footings on the ultimate

load and the ultimate bearing capacity. The footings in this ta-

ble are selected because they have nearly the same loading area.

The Qu and qu values are obtained using the method explained

in Section 5.1. It is concluded from the Table 4 that there is not

a great difference between bearing capacity of multi-edge foot-

ings (+, H and T shaped) and square footing when they are of

the nearly same area. Generally, the Qu and qu values fall into

the similar band both in loose and dense sands. The differences

in these values can be resulted from the methodology of the test-

ing. Ghazavi and Mokhtari [14] reported similar findings. They

concluded that there is not a distinguishing difference between

bearing capacity of multi-edge foundations and square founda-

tion when they are of the same area.

9 Overview of artificial neural networks

Artificial neural networks are a form of artificial intelligence,

which by means of their architecture, try to simulate the behav-

ior of the human brain and nervous system. They have the ability

to relate between the input data and corresponding output data

which can be defined depending on single or multiple param-

eters for solving a linear or nonlinear problem. Artificial neu-

ral networks do not require any prior knowledge and a physical

model about the problem to solve it. The nature of the relation-

ship between the input and output parameters are captured by
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(a) (b)

Fig. 12. Load settlement curves of square shaped footings for a) loose sand and b) dense sand

(a) Load (b) Bearing capacity

Fig. 13. Ultimate values of square shaped footings for loose and dense sands

Tab. 4. Shape effect on ultimate load and ultimate bearing capacity

Footing

Type

Footing

Width B

(cm)

Footing

Length L

(cm)

Footing

Area A

(cm2)

Ultimate

Load Qu

(kN)

Ultimate

Bearing

Capacity qu

(kPa)

Soil Density

+ 4 15.0 104 455 43.75

Loose
H 4 12.5 118 576 48.81

T 4 15.0 104 370 35.58

Square 10 10.0 100 303 30.30

+ 4 15.0 104 2119 203.75

Dense
H 4 12.5 118 1351 144.49

T 4 15.0 104 2424 233.08

Square 10 10.0 100 1348 134.80
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means of learning of samples in the data set [20, 34]. Artifi-

cial neural networks can be applied successfully for the solution

of the problems which have no specific solutions and too com-

plex to be modelled by the mathematical and traditional methods

[1, 38]. A comprehensive description of ANNs can be found in

many publications [18, 28, 34, 41].

In this study the artificial neural network approach, namely

multi-layer perceptron (MLP), and multi-linear regression

model (MLR) were used. Results of the field studies were com-

pared with those obtained by the MLP and MLR approaches.

An MLP distinguishes itself by the presence of one or more

hidden layers, whose computation nodes are correspondingly

called hidden neurons of hidden units. A MLP network structure

is shown in Fig. 14. The function of hidden neurons is to inter-

vene between the external input and the network output in some

useful manner. The numbers of hidden layer neurons are found

using simple trial-and-error method in all applications. The sig-

moid and linear functions are used for the activation functions

of the hidden and output nodes, respectively. The detailed the-

oretical information about MLP can be found in Haykin [17].

Here, the MLP is trained using Levenberg–Marquardt technique

due to fact that this technique is more powerful and faster than

the conventional gradient descent technique [11, 16].

A typical structure of artificial neural networks consists of a

number of processing elements, or nodes, that are usually ar-

ranged in layers: an input layer, an output layer and one or more

hidden layers (Fig. 14) [17].

Each processing element in a specific layer is fully or partially

joined to many other processing elements via weighted connec-

tions. The input from each element in the previous layer (xi)

is multiplied by an adjustable connection weight (w ji). At each

element, the weighted input signals are summed and a thresh-

old value or bias (θ j) is added. This combined input (I j) is

then passed through a nonlinear transfer function ( f (.)) (e.g.

sigmoidal transfer function and tanh transfer function) to pro-

duce the output of the processing elements (y j). The output of

one processing element provides the input to the processing el-

ements in the next layer. This process is summarized in Eq. (1)

and Eq. (2) and illustrated in Fig. 14.

I j =
∑

w jixi + θ j summation (1)

y j = f (I j) transfer (2)

The propagation of information in artificial neural networks

starts at the input layer where the network is presented with a

historical set of input data and the corresponding (desired) out-

puts. The actual output of the network is compared with the

desired output and an error is calculated. Using this error and

utilising a learning rule, the network adjusts its weights until it

can find a set of weights that will produce the input/output map-

ping that has the smallest possible error. This process is called

“learning” or “training”. It should be noted that a network with

one hidden layer can approximate any continuous function pro-

vided that sufficient connection weights are used [8, 19]. The

objective of the learning is to capture the relationship between

the input and output parameters. For this purpose network mod-

els are trained using by learning algorithm. The Levenberg-

Marquardt algorithm is an approximation to Newton’s method,

and Hagan and Menhaj [16] showed that it is very efficient for

training networks which have up to a few hundred weights. Al-

though the computational load of the Levenberg-Marquardt al-

gorithm is greater than the other techniques, this is compensated

by the increased efficiency and much better precision in results.

In many cases the Marquardt algorithm was found to converge

when other back-propagation techniques diverged [16]. If there

is a function, V(x), which is to be minimized with respect to the

parameter vector, x, then Newton’s method would be

∆x = −
[
∇2V (x)

]−1
∇V (x) (3)

where ∇2V (x) is the Hessian matrix and ∇V (x) is the gradient.

If we assume that V (x) is a sum of squares function

V (x) =

N∑
i=1

e2
i (x) (4)

then it can be shown that

∇V (x) = JT (x) e (x) (5)

∇2V (x) = JT (x) J (x) + S (x) (6)

where J (x) is the Jacobean matrix and S (x) described as follows

S (x) =

N∑
i=1

ei (x)∇2ei (x) (7)

For the Gauss-Newton method it is assumed that S (x) ≈ 0, and

the update of Eq. (3) becomes

∆x =
[
JT (x) J (x)

]−1
JT (x) e (x) (8)

The Levenberg-Marquardt modification to the Gauss-Newton

method is

∆x =
[
JT (x) J (x) + µI

]−1
JT (x) e (x) (9)

The parameter µ is multiplied by a β factor whenever a step

would result in an increased V(x). When a step reduces V(x),

µ is divided by β. When µ is large the algorithm becomes steep-

est descent (with step 1/µ), while for small µ the algorithm be-

comes Gauss-Newton. The Levenberg-Marquardt algorithm can

be considered a trust-region modification to Gauss-Newton. The

key step in this algorithm is the computation of the Jacobean ma-

trix. For the neural network-mapping problem, the terms in the

Jacobean matrix can be computed by a simple modification to

the back-propagation algorithm [29].
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Fig. 14. The chosen model architecture

The great majority of the civil engineering application of neu-

ral networks is based on use of the Back-propagation (BP) algo-

rithm primarily because of its simplicity [27]. In the BP algo-

rithm, training is supervised such that the network connection

weights are adjusted according to the sum of the squares of dif-

ferences between actual and target outputs.

The goal of the training is to reduce the error function itera-

tively, defined in the form of the sum of the squares of the errors

between actual outputs and target outputs. Global error, E, can

be defined as;

E =
1

p

p∑
p=1

Ep (10)

where p is the total number of training samples and Ep is the

error for training sample p.

Ep is calculated by following equation;

Ep =
1

2

N∑
i=1

(oi − ti)
2 (11)

In this equation, N, oi and ti represent the total number of the

output neurons, the network output at the ith output neuron and

the target output at the ith output neuron, respectively [28, 34].

The information related to the theory and applications of ANNs

may be found in Rumelhart and McClelland [32].

10 Artificial neural network applications

In this study, artificial neural networks were used for predic-

tion of ultimate loads of multi- edge footings supported by loose

and dense sand beds. For this purpose multilayer feed forward

network models have been trained using by LM learning algo-

rithm. The data used in running of network models have been

obtained from the laboratory model tests explained above. De-

tails of the laboratory model tests are given in Section 2 to 6.

The problem is proposed to network models by means of four

input parameters representing the width of the footing (B), the

length of the footing (L), internal friction angle of soil (ϕ), set-

tlement of the footing (s) and one output parameter representing

load (Q).

It is common practice to split the available data into two sub-

sets: a training set and an independent validation set [28]. The

literature offers little guidance in selecting the size of training

and the test sample. Most authors select the ratio of training

data versus testing data depending on their particular problems

[10, 22, 36]. So, a total of 2682 individual data samples ob-

tained from experimental studies were used for training and test-

ing of network models. The available data set were divided into

two groups as training and testing data sets which consist of

1999 and 683 data samples, respectively. Data samples were

selected randomly from the available data set to constitute men-

tioned data sets. One important aspect here is to make sure that

the minimum and maximum of the testing data set falls within

the minimum and maximum of the training dataset. The sta-

tistical properties and range of the parameters are shown in Ta-

ble 5 and Table 6, respectively. In Table 5, the parameters, Xmin,

Xmax, Xmean, S x and Csx refer to the minimum value, the max-

imum value, the mean value, the standard deviation value and

the skewness coefficient of the training and testing data sets, re-

spectively.

Tab. 5. The statistical properties of data sets

TRAINING DATA SET

Xmin Xmax Xmean S x Csx

B (m) 0.00 0.30 0.08 0.07 2.08

L (m) 0.10 0.30 0.15 0.05 1.35

ϕ (°) 36.00 42.00 38.54 2.97 0.31

S (mm) 0.00 7.07 2.46 1.79 0.54

Q (kN) 0.00 13.28 1.27 1.71 2.65

TEST DATA SET

Xmin Xmax Xmean S x Csx

B (m) 0.00 0.25 0.09 0.07 1.07

L (m) 0.10 0.25 0.15 0.03 1.13

ϕ (°) 36.00 42.00 37.98 2.82 0.73

S (mm) 0.00 6.67 2.60 1.83 0.41

Q (kN) 0.00 10.31 1.35 1.72 2.35

Tab. 6. The ranges of the parameters

Model variables Minimum value Maximum value Range

B (m) 0.00 0.30 0.30

L (m) 0.10 0.30 0.20

ϕ (°) 36.00 42.00 6.00

S (mm) 0.00 7.07 7.07

Q (kN) 0.00 13.28 13.28

To develop the best network model, given the available data

set, the training data set should contain all representative sam-

ples that are present in the available data set [35]. As seen in

Table 5, data sets represent the same problem domain such that
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Tab. 7. The saved weights from input layer to hidden layer

Hidden Layer Input Variables (II )

Neuron Number H j I1 I2 I3 I4

H1 -0.7896 -6.2162 5.5165 -5.0917

H2 -1.0301 -0.7131 -5.1160 -3.3963

H3 0.4126 -8.5326 2.3984 -5.3638

H4 -1.3430 -3.5226 -5.5350 -0.6776

H5 5.2560 -4.3348 -4.1283 5.9952

H6 4.3888 -6.9690 0.1306 -5.6891

H7 -5.0521 6.7447 -2.6695 -10.9850

Tab. 8. The saved weights from hidden layer to output layer

Output Neuron Hidden Layer Neuron Number (HJ )

Number (Ow) H1 H2 H3 H4 H5 H6 H7

O1 -0.1454 -5.1504 4.9205 -0.0652 -0.1291 0.1372 -0.0114

the statistical properties of the data sets are consistent with each

other. In any model development process, familiarity with the

available data is of the utmost importance. Generally, different

variables span different ranges. In order to ensure that all vari-

ables receive equal attention during the training process, they

should be standardized.

Preprocessing of the data is usually required before presenting

the data samples to the network model when the neurons have a

transfer function with bounded range. The reasons for scaling of

the data samples can be described as to initially equalize the im-

portance of variables and to improve interpretability of network

weights [15].

Determining an appropriate architecture of a neural network

for a particular problem is an important issue, since the net-

work topology directly affects its computational complexity and

its generalization capability [22]. Multilayer feed forward net-

work models with one hidden layer can approximate any com-

plex nonlinear function provided sufficiently many hidden layer

neurons are available. Therefore, in this study, multilayer feed

forward network models containing one hidden layer were used.

Determination of optimum number of the hidden layer neu-

rons is very important in order to predict accurately a parameter

using by artificial neural networks. But there is no theory how

many hidden layer neuron need to be used for a particular prob-

lem. For that reason, generally, numbers of hidden layer neurons

have been determined by trial-error method. A common strat-

egy for finding the optimum number of hidden layer neurons is

to start with a few numbers of neurons and increasing the num-

ber of neurons while monitoring the performance criteria, until

no significant improvement is observed [15, 30].

In this study, the performance of various network models with

different hidden layer neuron number was examined to choose

an appropriate number of hidden layer neurons. Hence, 2 neu-

rons were used in the hidden layer at the beginning of the pro-

cess then the neuron number was increased step-by-step adding

1 neuron until no significant improvement is noted.

MLR technique was applied to both testing and training

dataset. The following formulas, using MLR technique, were

found to offer the best statistical measures for fit of testing and

training datasets, respectively:

Q = −13.40 + 0.35s + 9.12B + 12.10L + 0.292ϕ (12)

where, Q (kN) is load, s (mm) is the footing settlement, B (m)

is the width of the footing, L (m) is the footing length and ϕ (°)

is the internal friction angle.

The network models tried were compared according to the

mean absolute relative error (MARE), the mean square error

(MSE) and coefficient of determination (R2) criteria. These cri-

teria are defined as;

MARE =
1

N

N∑
i=1

∣∣∣Mimeasured
− Mipredicted

∣∣∣
Mimeasured

· 100 (13)

MS E =

N∑
i=1

(
Mimeasured

− Mipredicted

)2

N
(14)

R2 =

=

p∑
i=1

[
Mimeasured

− Mimeasured

]2
−

p∑
i=1

[
Mimeasured

− Mipredicted

]2

p∑
i=1

[
Mimeasured

− Mimeasured

]2

(15)

In these equations N and M denote the total number of the data

samples and bearing capacity, respectively.

End of these processes the best performance was obtained

from ANN model which has 7 neurons in the hidden layer. The

chosen model architecture is shown in Fig. 14.

Training of the network models is carried out by presenting

training data set involving input-output data pairs. The connec-

tion weights are adjusted during the training phase according

to the differences between the target output (Mmeasured) and the

actual output (Mpredicted) [23].

Per. Pol. Civil Eng.366 Burakbey Davarci / Murat Ornek / Yakup Turedi



The adjustment of the connection weights are continued until

the mean square error over all the training samples falls below

a given value or the maximum number of epoch is reached. In

the training phase, the performance of the network models is

monitored at each epoch using test data set. Overfitting of the

network model is prevented with this way. When training phase

was over the weights are saved for using in the test phase. The

saved weights and biases values used by chosen network model

with 7 hidden layer neurons are presented in Table 7, Table 8

and Table 9, respectively.

Tab. 9. The saved biases values

Neuron number Bias values

H1 3.6254

H2 7.8073

H3 9.2571

H4 5.1371

H5 -4.5568

H6 4.9537

H7 2.6529

O1 0.3680

To compare the results obtained from network and regres-

sion models with the experimental results, predicted values were

transformed back to their original values and then MARE and

MSE were computed.

The tangent sigmoid, logarithmic sigmoid and pure linear

transfer functions were tried as activation functions for hidden

and output layer neurons to determine the best network model

[17]. The most appropriate results have been obtained from cho-

sen network model in which tangent sigmoid and pure linear

functions used as activation function for the hidden and output

layer neurons, respectively. The program used in running the

network models was written in Matlab language code.

The MSE (mean square error), MARE (mean absolute relative

error), and R2 (determination coefficient) values of MLP and

MLR, for both training and testing phases are given in Table 10.

Tab. 10. The results obtained from the chosen network model and regression

model

MLP MLR

Train MSE (kPa) 0.09 1.19

Test MSE (kPa) 0.23 0.95

Train MARE 94.40 1165.73

Test MARE 111.65 627.60

R2
train

0.968 0.593

R2
test 0.949 0.680

Epoch number 24 -

Hidden layer neurons 7 -

As seen from Table 10 that the MLP model has the smaller

MSE (0.09), and MARE (94.40) and the highest R2 (0.968) for

training phase. It also has the smaller MSE (0.23) and MARE

(111.65) and higher R2 (0.949) for testing phase. According

to this statistical analysis, the MLP estimations are better than

those of the MLR and also produce more accurate results than

the MLR. It can be seen from Table 10 that the ANN method per-

forms better than the MLR both in training and testing phases.

In other words, the neural network is able to successfully model

the bearing capacity of shallow footings resting on clay soil.

Fig. 15 and Fig. 16 present the measured bearing capacities

versus predicted bearing capacities by network model with R2

coefficients for training and testing phases, respectively. The lin-

ear 1:1 lines were also plotted in these figures to discuss the per-

formance of statistical models. It is seen from the figures that for

artificial neural network (ANN) model approach, the location

points of measured and predicted bearing capacity values are

scattered around 1:1 lines for both training and testing phases.

On the other hand the multi-linear regression model gives results

in a broad band, especially in training phase. The prediction per-

formance increases from 59.3% to 96.8% for training phase and

from 68.0% to 94.9% for testing phase, when the determination

coefficients (R2) were considered. It is concluded that a statis-

tical model based on artificial neural network approach, namely

MLP, is also proposed as an alternative to MLR technique. MLP

produced more accurate results than that of the MLR technique.

11 Limitations

There are several limitations that should be mentioned. It

is well known that, full-scale loading test results are valid es-

pecially for in-situ conditions and for soil properties in which

the test was performed. However, a full-scale loading test is

not economic due to the expensive cost in time and money re-

quired for construction, instrumentation and testing. Therefore,

small-scale model test studies are used widely as an alterna-

tive to full-scale loading tests, despite of their scale-errors [9].

Then, the tests were conducted on only one soil type. The re-

sults observed from this test program may be different for other

soils. Additionally, only surface footings were tested. The effect

of footing embedment should also be included in future works.

These additional researches are recommended as further inves-

tigations to improve the understanding of the bearing capacity

behavior comprehensively, which may lead to developing a de-

sign method.

12 Conclusions

In this study, laboratory model tests were performed using

four types of multi-edge footings under two different soil den-

sities. A total of four different test Series were performed in-

cluding the 25 different footing sizes. At the end of the tests,

load settlement curves were plotted and artificial neural net-

works (ANNs) and multi-linear regression model (MLR) used

for prediction of carrying load and bearing capacity of multi-

edge footings over loose and dense sand soil. Based on the re-

sults from this investigation, the following main conclusions can

be drawn:

• For the multi-edge footings, the loads increase with an in-

crease in footing size both for loose and dense sand cases.
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Fig. 15. The correlation between the measured and predicted bearing capacities in the training phase

Fig. 16. The correlation between the measured and predicted bearing capacities in the testing phase
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Similarly, for a constant settlement value, the loads of dense

sand are greater than that of loose sand.

• The ultimate load and ultimate bearing capacity increase with

an increase in footing area in both loose and dense sands.

• For + shaped footings; while footing area increases from

36 cm2 (B x L = 3 x 10 cm) to 161 cm2 (B x L = 7 x 15 cm), the

ultimate loads increases about 8.3 and 6.0 times in loose and

dense sand, respectively. For H shaped footings; for the case

of B x L = 5 x 15 cm and s = 5.0 mm, the loads measured are

1.18 kN and 3.24 kN for loose and dense sands, respectively.

For T shaped footings, for the case of B x L = 7 x 15 cm and

s = 5.0 mm, the loads measured are 0.91 kN and 5.88 kN for

loose and dense sands, respectively. Bearing capacities for

the loose sand case are obtained approximately 73.38 kPa;

65.80 kPa; 56.78 kPa and 57.99 kPa for 15 cm; 20 cm; 25 cm

and 30 cm widths, respectively.

• For the +, H and T shaped footings, for the loose sands at the

failure stages, the loads and settlements remain almost con-

stant, and for the dense sands at the failure stages, the loads

start to decrease while settlements increase.

• There is not a great difference between bearing capacity of

multi-edge footings (+, H and T shaped) and square footing

when they are of the nearly same area. Generally, the ultimate

load and ultimate bearing capacity values fall into the similar

band both in loose and dense sands.

• The artificial neural network model serves as simple and re-

liable tool for the ultimate load of multi-edge footings over

loose and dense sands. The results produced high coefficients

of correlation for the training and testing data of 0.968 and

0.949, respectively.

• A statistical model based on artificial neural network ap-

proach, namely MLP, is also proposed as an alternative to

MLR technique. MLP produced more accurate results than

that of the MLR technique, MLP gave better results between

them in terms of MSE (= 0.09), MARE (= 94.40%) and R2

(= 0.968) statistics.

Nevertheless the investigation is considered to have provided a

useful basis for further research leading to an increased under-

standing of the application of multi-edge footings to bearing ca-

pacity problems.
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