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Abstract
A new homotopy-based strategy is presented that can be used 
in the robust determination of multiple steady-state solutions 
for continuous stirred tank reactor (CSTR) systems. The strat-
egy relies on the features of homotopy parameter and variables 
bounding, and requires only that one feasible solution of the 
system is either known beforehand or can be solved with an 
existing solving algorithm. The strategy systematically results 
in all the multiple solutions, or alternatively confirms that the 
problem does not have multiple solutions, within the prede-
fined problem domain. The strategy was successfully demon-
strated with CSTR cases gathered from the literature. Finding 
all the feasible solutions was verified in simple CSTR systems 
by applying tools available in the literature. Variables bound-
ing constrained the homotopy path to travel only within the 
pre-defined variable domain. The strategy is applicable for 
determining multiple steady states for a variety of chemical 
engineering systems.

Keywords
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1 Introduction
The steady-state and dynamic behaviour analyses of contin-

uous stirred tank reactors (CSTRs) have received considerable 
interest in the field of chemical engineering. Even though the 
search for complete analysis methods of CSTR behaviour has 
been fairly exhaustive, especially during the 1980s, the quota-
tion from Macbeth Act V in the title of the study by Farr and 
Aris [1]: “Yet who would have thought the old man to have 
had so much blood in him?” describes well how intriguing 
and challenging CSTRs have proven to be. The field contin-
ues to receive some attention through the introduction of more 
complex CSTR systems (see e.g. Mjalli et al. [2]; Švandová 
et al. [3]; Kiss et al. [4]; Brooks [5]; Yermakova and Anikeev 
[6]; Waschler et al. [7]). However, the emphasis in the current 
studies in the literature has shifted towards the investigation 
of CSTR systems from the perspective of numerical solv-
ing methods [8-12]. The reason for this is that CSTR models 
exhibit characteristics that pose challenges to practically all the 
available general-purpose numerical solving methods. Hence, 
they are naturally interesting case study examples for different 
novel solving methods. This is also the focus of this study.

CSTRs are typically modelled by relying on the material 
balances of the components, the enthalpy balance of the reactor 
and the enthalpy balance of the cooling, or heating, medium. 
In the case of a two- or multi-phase reactor system, the CSTR 
model also includes phase equilibrium relations for the compo-
nent system under investigation.

When comparing the CSTR model to models of other process 
units in chemical engineering, such as distillation or absorp-
tion column models, it can be seen that the total number of 
equations in a CSTR model is relatively small. This, however, 
does not signify that the operation and behaviour of a CSTR is 
straightforward and simple. In fact, a CSTR is the simplest type 
of chemical reactor that exhibits both multiple steady states and 
oscillations [13]. The complexity of CSTR behaviour is due 
to the combined effect of chemical reactions and interaction 
between the chemical reactions and phase equilibrium. There-
fore, CSTR models are generally highly non-linear. The non-
linearity is reflected in the form of multiple steady states and a 
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multiform dynamic behaviour including instability, sustained 
oscillations, and phenomena such as strange attractors and cha-
otic behaviour (see e.g. Jayakumar et al. [14]; Kiss et al. [4]; 
Pérez-Polo and Pérez-Molina [15]; Razón and Schmitz [16]; 
Russo and Bequette [17]).

The non-linearity and subsequent occurrence of multiple 
steady states of a CSTR model may arise even when the mod-
elled reactor system seems to be extremely limited in terms 
of sources of non-linear behaviour, i.e. even in the absence of 
thermal effects (see Horn and Jackson [18]). Uppal et al. [19-
20] analysed the steady-state operation for the system of an 
irreversible first-order, exothermal, Arrhenius-type reaction 
in a non-adiabatic CSTR and observed that as many as three 
steady states may exist. Similarly, Uppal et al. [19-20] showed 
that six different multiplicity patterns and as well as a unique 
steady state exist for the system when residence time is used 
as the bifurcation parameter, i.e. the system has in total seven 
bifurcation diagrams. This analysis was later confirmed by 
Golubitsky and Keyfitz [21] using singularity theory. The num-
ber of possible multiplicities and especially the number of pos-
sible bifurcation diagrams increases rapidly with an increase in 
the complexity of the system. For example, in the case of con-
secutive first-order Arrhenius-type reactions in a non-adiabatic 
CSTR, seven steady states may exist and 23 different bifurca-
tion diagrams can be formulated [16].

Naturally, multiple steady states also emerge in other types 
of CSTR systems, e.g. in CSTR cascades [2-3], CSTR-recycle 
systems [22], CSTR–separator–recycle systems [4-5], and in 
two-phase CSTRs [6-7].

Even though a model describing a CSTR may have multiple 
solutions, only some of the solutions correspond to conditions 
where the state of CSTR is stable and thus feasible for practi-
cal operation [23]. The stability of each solution with respect to 
practical operation can be ascertained, for example by dynamic 
simulation. The dynamic simulation of the system is definitely 
necessary for system control, management and safety analy-
sis purposes. However, without extensive knowledge about the 
steady-state behaviour of the system, the dynamic simulation 
might yield insufficient operation analysis results. Hence, it is 
of great value if we can define at least the maximum number of 
steady-state solutions of a CSTR model and furthermore deter-
mine parameter regions corresponding to a specific number of 
solutions. As a consequence, the prediction of multiplicity pat-
terns for different CSTR systems has received considerable atten-
tion, especially in the studies of Balakotaiah and Luss [24-29].

Even though the CSTR systems were investigated in depth 
during the 1980s, attention has been paid mainly to the pre-
diction of multiplicity patterns and stability analysis of CSTR 
dynamics, and the formulation of robust solving strategies to 
obtain the corresponding steady-state profiles has not been 
as extensive. In addition, it is worth noting that the majority 
of the studies concentrate on the investigation of simplified 

CSTR systems, e.g. the effect of the cooling jacket tempera-
ture dynamics is not typically incorporated in the model [17]. 
Therefore, there is a clear need for a robust method for the 
determination of all the feasible steady states of more complex 
CSTR systems, and evidently for more general chemical engi-
neering systems with given specifications. In addition, at the 
moment, there is no robust routine in commercial steady-state 
simulation packages to perform this analysis. 

In this paper, a solving strategy is proposed that aims at 
tackling the weakness of the commercial steady-state simula-
tion packages mentioned above. The strategy exploits the fact 
that generally one feasible solution for a process model can be 
found with some existing solving algorithm at a reasonable cal-
culation cost. The solution found is then used as a starting point 
for the Newton homotopy-based solving method, which in turn 
is used to find all the remaining feasible solutions of the model. 

In this study, it will be shown that the target of finding all 
the feasible solutions for the investigated CSTR systems can be 
reached with the Newton homotopy-based solving method if it 
is equipped with the features of homotopy parameter and varia-
bles bounding presented in Malinen and Tanskanen [30-31]. The 
solving strategy of the present work extends the applicability of 
the method presented in Malinen et al. [32] in the determina-
tion of multiple steady states of chemical engineering systems. 
In addition, the method proposed by Malinen et al. [32] has a 
shortcoming when applied to systems where the trivial solution 
is located in the vicinity of the variable domain. This shortcom-
ing is tackled in this study. On the other hand, the focus in this 
work is to demonstrate the characteristics and robustness of the 
proposed solving strategy in various CSTR cases gathered from 
the literature. The cases investigated are ordered in terms of 
increasing complexity. In the simpler examples, the number of 
solutions can be verified through the analysis methods available 
in the literature for CSTR systems. For the two latest CSTR sys-
tems this kind of conclusive method is not available and hence 
applying a robust solving strategy, like the one presented in this 
work, to find the solutions is the only feasible way to analyse the 
multiplicity behaviour of the system thoroughly.

2 Characteristics of some present solving methods 
When the CSTR is considered to operate at a steady state, 

the mathematical description is reduced to a set of equations:

f(x) = 0.

Basically, the solving of this non-linear equation set can be 
carried out with locally convergent, Newton-Raphson-based 
solving methods. Locally convergent solving methods usually 
work satisfactorily if a feasible initial guess is supplied. In addi-
tion, when an initial guess close to the solution is available, the 
solving methods converge superlinearly to a solution of the 
CSTR model. However, the locally convergent solving methods 
are able to converge only to a single solution from an initial 

(1)
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guess. Since a CSTR model may have several feasible solutions, 
achieving at least some of them robustly would require a large 
set of initial guesses over the entire feasible domain. Thus, it is 
evident that this kind of ‘trial and error’ method is incapable of 
resulting in all the feasible solutions with full certainty.

In contrast, homotopy continuation methods form an attrac-
tive set of solving methods, which offer a means of reaching 
multiple steady-state solutions for a CSTR model from one 
starting point. Homotopy continuation methods can be roughly 
divided into problem-dependent and problem-independent 
homotopies. The division can be made on the basis of the role 
of the continuation parameter.

In problem-dependent homotopies, the continuation param-
eter has a physical meaning. The homotopies can be used to 
constitute bifurcation diagrams where for example the conver-
sion of a reactant in a CSTR is presented as a function of resi-
dence time. Problem-dependent homotopies have been used 
in several CSTR studies (see e.g. Vadapalli and Seader [12]; 
Wang et al. [33]; Yermakova and Anikeev [6]). Since problem-
dependent homotopies are inherently strongly problem-tai-
lored, they are not directly applicable as such to the solving of 
various chemical engineering problems.

Problem-independent homotopies, on the other hand, can be 
applied directly to the solving of various chemical engineering 
problems, because the continuation parameter is an artificial 
parameter without physical meaning. Problem-independent 
homotopies are based on the homotopy function:

h x f x g x 0( , ) ( ) ( ) ( )θ θ θ= + − =1 .

The basic principle in problem-independent homotopies is to 
track a homotopy path defined by h(x, θ) from a starting point, 
(x0,0), to a solution, (x*,1). Depending on the selection of the 
auxiliary function, g(x), different homotopies are obtained. As 
an example, by defining g(x) = f(x) − f(x0), the traditional New-
ton homotopy is obtained. The homotopy continuation methods 
have been discussed in detail, e.g. in Allgower and Georg [34], 
Gritton et al. [35], Kovach and Seider [36], Kuno and Seader 
[37], Lin et al. [38], Seader et al. [39], Seydel [40], Seydel and 
Hlavacek [41], Wayburn and Seader [42], and Watson [43]. 
Hence, the theory behind homotopy continuation methods is 
discussed only when appropriate in the present work.

One advantage of the homotopy continuation methods is 
that several solutions for Eq. (1) can be reached on one homot-
opy branch. However, the methods cannot guarantee that all the 
feasible steady-state solutions of a chemical engineering prob-
lem are approached with certainty on one continuous homotopy 
branch. The main reason for this is that the homotopy path may 
travel outside the feasible variable domain. It is also due to the 
absence of real space connections between separate homotopy 
path branches, thus preventing the attainment of solutions on 
isolated branches. Recently, Rahimian et al. [8-9] combined 
the features of fixed-point (FP) and Newton (N) homotopies to 

form a new homotopy called as the FPN homotopy. Rahimian 
et al. [8-9] applied FPN homotopy in the solving of a multitude 
of different chemical engineering related problems to reach all 
the feasible solutions of the problems successfully. However, 
the formulation of FPN homotopy does not include variables 
bounding, and hence the path may travel outside the feasible 
variable domain.

The challenges mentioned above can also be encountered 
in the solving of a CSTR model with traditional homotopies. 
Herein, the adiabatic CSTR with a first-order exothermal reac-
tion presented in Chapter 4.2 is used as an illustrative example. 
As shown in Fig. 1a, in some cases the starting point is such 
that the traditional Newton homotopy successfully results in a 
homotopy path which passes through all the solutions on the θ 
=1 plane. However, as Figs. 1b–1d show, separate homotopy 
path branches are formed when the starting point is changed. 
In these cases, some of the solutions of the original equation 
set exist on a different homotopy path branch than the starting 
point. Thus, the wrong conclusion about the number and exist-
ence of multiple solutions might be drawn.

It is noteworthy that when a starting point is also a solu-
tion of the original equation set (see Fig. 1d), the traditional 
Newton homotopy results in as many separate homotopy path 
branches as there are solutions in the original equation set. As 
Fig. 1d illustrates, the branches formed exist parallel with each 
other and travel from negative infinity to positive infinity with 
respect to the homotopy parameter.

As Fig. 1e indicates, in the worst case, none of the solu-
tions are on the same homotopy path branch as the starting 
point. Therefore, the solutions on the isola branch would be 
completely missed, and the wrong conclusion might be made, 
namely that the problem has no feasible solutions with the 
given specifications. Thus, as Fig. 1 illustrates, the traditional 
Newton homotopy is not able to find all the steady-state solu-
tions of a CSTR system robustly.

Fig. 1 also illustrates another fundamental problem with the 
traditional problem-independent homotopy methods. Similarly 
to locally convergent solving methods, they do not prevent 
the solution path from travelling outside the feasible variable 
domain. As a consequence, negative mole fraction and temper-
ature values for example might be encountered along the solu-
tion path (see Fig. 1c). Negative values, when substituted into 
logarithm or square root functions, result in complex numbers, 
which are not usually tolerated in the thermodynamic subrou-
tines of process simulation packages. The solving may also be 
completely interrupted by a fatal error if the variable value of 
pure zero is substituted into a logarithm function.

The above-mentioned weaknesses, i.e. the impact of the start-
ing point on the accessibility of the solutions and the challenge of 
keeping the homotopy path within the feasible problem domain, 
were also recently demonstrated by Giunta et al. [44] in their 
study of fixed-point homotopy to find multiple steady states for 

(2)
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the system of CO oxidation in a catalyst pellet. Evidently, there 
is a general need for a problem-independent homotopy method, 
which would allow the achievement of all the feasible solutions 
robustly and would also keep the variable values strictly within 
the feasible problem domain boundaries throughout the solving.

Efforts aiming at developing such a method include the 
bounded homotopies initially proposed by Paloschi [45-47], 
and later revised as modified bounded homotopies by Malinen 
and Tanskanen [29,48]. Bounded homotopies prevent the 
homotopy path from exceeding the feasible problem domain 

and thus prevent failures originating from the substitution of 
unfeasible variable values in thermodynamic subroutines.

In order to improve the capabilities of homotopy methods 
to approach solutions existing on separate homotopy path 
branches, Malinen and Tanskanen [31] proposed the concept 
of homotopy parameter bounding. However, as was concluded 
in Malinen [49], when used separately, both the concept of 
homotopy parameter bounding and bounding with respect to 
problem variables are incapable of finding all the solutions if 
the solutions exist on isolated branches.
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Fig. 1 The homotopy paths formed with the traditional Newton homotopy method for the set of Eqs. (11) and (12) describing the adiabatic CSTR with a 
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parameter set used in Eqs. (11) and (12) is Q/VR = 25, β = 0.25 and γ = 30.
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Recently, Malinen et al. [32] presented a Newton homotopy-
based method, which was equipped with the features of both 
homotopy parameter and variables bounding. It was noticed 
that the method was capable of robustly determining all the sta-
tionary points for the tangent plane distance function (TPDF). 
Since the method presented in Malinen et al. [32] utilises the 
properties of the TPDF problem to determine all the solutions 
of the problem, it is not as such directly usable in the solution 
of a general chemical engineering problem. In this study, the 
method presented in Malinen et al. [32] is modified to extend 
its applicability to CSTR systems.

3 The applied solving strategy
The core of the solving strategy presented here is a modi-

fied Newton homotopy method having features of both homot-
opy parameter and variables bounding. The method applied in 
this paper is a revised formulation of the method presented in 
Malinen et al. [32].

3.1 The modified Newton homotopy method with 
both homotopy parameter and variables bounding

The modified Newton homotopy formulation applied in this 
paper can be written as

h x
x f(x e f (x x x
bx

bM
θ θ

π θ θ θ

mod inf

inf inf inf inf

( , )

( , ) ) ( ) ' )(

=

+ − + −0

bb,inf .) 0=

π(xinf, θ) is a penalty function resulting in a scalar. The pen-
alty function annihilates the magnitude of the function, f(xinf), 
whenever the homotopy path runs outside the predefined prob-
lem domain. Correspondingly, the auxiliary functions, M(θ − 
θb)e and f (x x x )' )(inf inf ,inf

0 − b , compensate for the annihila-
tion, thus resulting in a path that is bounded with respect to 
the homotopy parameter, θ, and mapped variables, xinf . As was 
noticed in Malinen et al. [32], since there are n + 1 variables, i.e. 
xinf  and θ , but only n equations, the homotopy parameter and 
variables bounding features in Eq. (3) are concurrently unable 
to keep the path completely bounded. Basically, the path may 
exceed the problem domain with respect to one of the prob-
lem variables or the homotopy parameter. However, by using 
a small numerical value for parameter M, such as 0.001, the 
effect of the auxiliary function, f (x x x )' )(inf inf ,inf

0 − b , will be 
stronger than the effect of the other auxiliary function, M(θ − 
θb)e, on the course of the homotopy path. Thus, the boundaries 
of the feasible problem variable domain are neither reached nor 
crossed along the homotopy path. The significance of the value 
of parameter M is investigated later on in this study.

Due to the fact that the homotopy parameter has no physi-
cal meaning, the boundaries of the homotopy parameter can in 
essence be defined arbitrarily. However, in practice, the curvature 
of the homotopy path should be reasonable from the perspective 

of a path tracking method and overall solving efficiency. The 
selection of boundaries with respect to solution efficiency is not, 
however, the aim of the present work. In the present study, the 
boundaries of the homotopy parameter have been set as −1 and 1.

It has to be emphasized that mapped problem variables must 
be used when applying Eq. (3). On the basis of the maximum 
bi
max  and minimum bi

min  values that are set for every variable 
xi, mapping from a finite space into an infinite space is carried 
out as follows:

x
x b

b bi
i i

i i

inf

min

max min
log ,=

⋅ −( )
−
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when x b bi i i≥ ⋅ +( )0 5. .max min

Variables mapping requires that the maximum, bi
max , and 

minimum, bi
min , values are given for every problem variable 

in the unmapped variable space. The values can be realized as 
natural or artificial domain boundary values. For example, in 
the case of mole fractions, the natural selection for the domain 
boundary values is bσ

min = 0  and bi
max =1, whereas in the case 

of molar flows or concentrations the upper domain boundary 
value is strongly case-sensitive and must be set artificially or 
based on case-dependent information.

The details of the symbols and functions in Eq. (3) can be 
found in Malinen et al. [32]. It is worth emphasizing that Eq. 
(3) and the formulation presented in Malinen at al. [32] differ in 
the way the Jacobian matrix term is determined in the auxiliary 
function, f (x x x )' )(inf inf ,inf

0 − b . In Malinen et al. [32], the Jac-
obian matrix term was determined at the trivial solution of the 
TPDF, i.e. f ( x )' )(inf inf ,infz x0 − b . In general, however, chemical 
engineering problems have no trivial solutions. In addition, if 
the Jacobian matrix term is determined at a starting point close 
to the problem domain boundary, it may cause the numerical 
values of some non-zero elements of the Jacobian matrix term 
to become nearly zero. This in turn will pose numerical chal-
lenges for homotopy path tracking inside the bounding zone. 
In addition, if some non-zero element of the Jacobian matrix 
is evaluated incorrectly as zero, the homotopy path will not be 
bounded with respect to the variables. As a result, the homot-
opy path will exit the feasible domain with respect to the vari-
ables rather than the homotopy parameter. 

In order to tackle these challenges, in this paper, a generic 
way to determine the Jacobian matrix term in Eq. (3) is imple-
mented: f (x' )inf

0
 is determined at the centre of the mapped 

variable space, i.e. x 00

inf =  and f (x f 0' ) '( )inf

0 = . With this selec-
tion, the problem of evaluating the Jacobian matrix term ele-
ments close to the problem domain boundaries is avoided, as it 

(3)

(4)

(5)
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is common that the values of some non-zero elements approach 
machine precision, and pure zero near the domain boundaries. 
The values typically become sufficiently significant at the centre 
of the mapped variable space. Thus, successful path tracking can 
also be guaranteed, assuming non-singular f '(0) inside a narrow 
bounding zone with respect to the problem variables.

To distinguish clearly the starting point and the point where the 
Jacobian matrix f (x' )inf

0
 is evaluated, it is stressed that herein x0

inf  
x is not the actual starting point for homotopy path tracking with 
Eq. (3). Instead, one solution of the original problem (Eq. (1)) in 
the mapped variable space, xinf*, acts as the starting point for path 
tracking. Thus, f(xinf*, 0) = 0, xinf* = xb,inf  and θ = θb at the start-
ing point. Therefore, in order to apply the proposed strategy, one 
solution of the original problem must be either known beforehand 
or must be solved with some existing solving algorithm.

When any feasible solution of the original problem is avail-
able, the solution can be used as a starting point for homotopy 
path tracking based on Eq. (3). It is worth noting that in the 
present solving method, Eq. (3), the solutions of the original 
problem, Eq. (1), are situated on the θ = 0 plane and not on 
the θ =1 plane as is the situation with the traditional problem-
independent homotopy Eq. (2).

3.2 The solving strategy for multiplicity 
determination 

Fig. 2 represents a two-phase solving strategy for the deter-
mination of multiple solutions of an equation set, f(x) = 0, within 
a feasible problem domain. In Phase I, one solution of the prob-
lem is solved, if it is not already available. If the solution has to 
be solved, the solving can be performed with any existing solv-
ing method. Usually, local solving methods, e.g. Newton-Raph-
son-based solving methods, result in a solution with reasonable 
calculation expenses. If a local solving method is not able to 
result robustly in a solution, some (global) solving method, e.g. 
a homotopy method, can be used instead. When investigating 
CSTR systems, the problem-dependent homotopies are appli-
cable in Phase I. This is due to the fact that the starting point 
for the homotopy path is easily formulated by applying e.g. the 
residence time in CSTR as the homotopy parameter. As a conse-
quence, the CSTR system has only one easily obtainable steady-
state solution at the starting point when the residence time has a 
value of zero. At that point, the reactants have zero conversion 
and the outlet stream temperature equals the feed flow tempera-
ture. If no solution has been found, not even with global solv-
ing methods, it is highly likely that the problem has no feasible 
solution with the specifications. The existence of at least one 
feasible solution for the problem can be ascertained before solv-
ing in certain problems by applying physically realizable values 
for the system parameters, as in the case of a CSTR in which a 
single exothermic, first-order reaction occurs. Furthermore, in 
the system even the multiplicity pattern, i.e. the number of fea-
sible solutions, can be predicted [24].

Fig. 2 Solving strategy for the determination of all the feasible solutions of a 
CSTR system at the steady state.

In Phase II, the actual determination of the problem multi-
plicities is performed in three steps. First, the feasible domain 
boundary values, i.e. bi

min  and bi
max , are selected for every 

problem variable. Then, the Jacobian matrix evaluated at the 
centre of the variable domain, f (x f 0' ) '( )inf

0 = , is determined. 
Finally, the solution determined in Phase I of the solving strat-
egy is mapped into the infinite variable space, and then the 
homotopy path defined by Eq. (3) is tracked forward and back-
ward from the θ = 0 plane, i.e. from the starting point (xinf*,0). 
All the points where the homotopy path intercepts the θ = 0 
plane are collected. However, only the points that do not lie 
inside the bounding zone represent the feasible solutions of the 
original problem  f(xinf) = 0. The path is tracked until the path 
intercepts the θ = −1 and θ = 1 planes. Approaching the θ = 
−1 and θ = 1 planes indicates that all possible solutions within 
the feasible problem domain have been approached. As will be 
illustrated with the test cases, the mapped problem variables 
have the same values with opposite signs at the interception 
points on the θ = −1 and θ = 1 planes. This behaviour was also 
noticed for the TPDF problems in Malinen et al. [32].

The multiplicity determination strategy proposed in Fig. 2 
can be flexibly implemented as a complementary part of an 
existing NAE solving algorithm. The strategy requires only 
that one feasible solution of the problem is either known 
beforehand or can be solved with an existing solving algo-
rithm. Then, the actual multiplicity determination strategy 
systematically results in all the solutions, or alternatively the 
information that the problem does not have multiple solutions, 
within the predefined problem domain. As illustrated in Chap-
ter 4, the strategy is highly suitable for solving different CSTR 
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system models, where problem variables must have physically 
meaningful values throughout the solving procedure.

4 Test problems
To illustrate the performance of the solving strategy intro-

duced in Chapter 3, the solving of four CSTR problems gathered 
from the literature are considered here. In all the cases, the width 
of the bounding zone with respect to the unmapped problem 
variables is kept extremely narrow. The lower li

inf  and upper ui
inf  

inner boundaries have been selected as -10 and 10, respectively. 
As a result, the bounding zone width is 5 ∙ 10-11 of the width of 
the problem domain in the unmapped variable space.

The CSTR problems and the proposed solving strategy 
have been implemented in the MATLAB environment. The 
actual homotopy path tracking has been carried out with CL_
MATCONT, which is a continuation toolbox in MATLAB [50].

4.1 BioCSTR
Following the representation of Problem 8.5 in Finlayson 

[51], the growing of cells in a CSTR can be described as

Q S S V S
K S S Kin

m

S I

( ) ,− = −
+ +R
µ

2

where Q is the volumetric flow rate, S is the substrate con-
centration in the reactor, Sin is the substrate concentration in 
the feed flow, VR is the reactor volume, μm is the maximum 
specific growth reaction rate, KS is the Monod constant and KI 

is the σ µ
= =
S
S

Da V
QSin

m

in

, R  inhibition constant. By defining 

ω =
K
S
S

in

 and ε = S
K
in

I

, Eq. (6) can be transformed into the form

( )( ) ,σ ω σ εσ σ− + + + =1 02 Da

and, to enable the investigation of number of real solutions, 
into the form

εσ ε σ ω σ ω3 21 1 0+ −( ) + − +( ) − =Da .

The number of real solutions of this cubic polynomial in Eq. (8) 
can be evaluated with the help of its discriminant ∆:

∆ = − + − −18 4 4 270 1 2 3 1

3

3 1

2

2

2

0 2

3

0

2

3

2a a a a a a a a a a a a ,

where  a0= ε,  a1 = 1 − ε,  a2 = ω − 1+ Da  and  a3 = −ω.
If the discriminant
•	 is negative, the polynomial has only one real-valued 

solution; the other solutions being complex,
•	 equals zero, the polynomial has a multiple solution and 

all the solutions are real- valued, 
•	 is positive, all the solutions of the polynomial are distinct 

and exist in the real-value space.

Based on the evaluation of the discriminant with respect to 
changes in the Damköhler number while the other parameters 
remain unchanged, the BioCSTR system has seven distinct 
domains: 

∆ =
>
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The differences between the domains with respect to the 
real-valued solutions can be seen in Fig. 3.
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Feasible solution 1

Feasible solution 2

Feasible solution 3

Unfeasible solution branch

Change of number of real solutions

Fig. 3 BioCSTR system solutions determined with the proposed 
solving strategy as a function of the Damköhler number. The 
markers indicate solutions found for the BioCSTR model at different 
Damköhler numbers. All the feasible solutions were obtained 
regardless of the value of Da. Also, all the unfeasible real solutions 

were located in all cases by changing minbσ  from zero to −0.5.

With the specifications  Da = 1.19,  ω = 0.00356  and
ε = 2.53, the discriminant is positive, as can be observed in Eq. 
(10). Thus, the problem has three distinct real solutions within 
the parameter set. In addition, as can be seen in Fig. 3, all 
of the solutions have positive real values. The substrate con-
centration inside the reactor cannot exceed the inlet flow sub-
strate concentration, i.e.  σ ≤ 1, and naturally the concentra-
tion cannot have negative values, i.e.  σ ≥ 0. Thus, all of them 
are feasible since the solutions are bounded in the range of
0 ≤ σ ≤ 1.  Thus, for the investigation of the solving strategy 
characteristics, we define the problem domain boundary val-
ues such that bσ

max =1  and 0min =σb .
In Phase I of the proposed solving strategy, the first solu-

tion of the BioCSTR problem is solved. The MATLAB fsolve 
routine was used as the solver. By using σinf = 0 as the ini-
tial guess for the solving, a solution of the BioCSTR model 
was found at σinf* = −0.0584, which corresponds in the 
unmapped variable space to the solution σ* = 0.4371. In Phase 
II of the proposed solving strategy, the Jacobian at the centre 
of the variable space is first calculated. In the mapped vari-
able space 6459.0)0(')(' inf

0 == ff σ . By using the solution

(6)

(7)

(8)

(9)

(10)
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σinf* = −0.0584 as the starting point for homotopy path tracking, 
the homotopy path is tracked both in forward and backward 
directions and solutions are collected. The path is represented 
in Fig. 4. As can be seen, all the feasible solutions of Eq. (7) 
are achieved along a single homotopy path. The solutions on 
the θ = 0 plane with the mapped variables are σinf* = [−0.0584 − 
0.5359 −1.3542], which correspond in the unmapped variable 
space to σ* = [0.4371 0.1456 0.0221]. It can also be noticed 
that the path intercepts the planes θ = −1 and θ = 1 at the points 
where the mapped problem variable  σinf  has the same numeri-
cal value, but with opposite signs, i.e. (θ, σinf ) = (−1  10.6429) 
and (θ, σinf) = (−1  10.6429). The interception takes place inside 
the bounding zone where both the homotopy parameter and 
variables bounding features are in force.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-10
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θ

σ
in

f

Fig. 4 Homotopy path in the mapped variable space with the solving strategy 
of the present study. Starting point of the homotopy path (○), solutions (×), 

and points (●) where the path intercepts the θ = −1 and θ = 1 planes.

The interception location is dependent on the value of param-
eter M. The effect of the parameter on the course of the homot-
opy path and the interception location can be seen in Fig. 5.

As can be seen in Fig. 5a, all the homotopy paths, irrespec-
tive of the M parameter value, intercept the domain boundaries 
with respect to the homotopy parameter. However, the location 
of the crossing moves closer to the variable outer boundary as 
the M parameter value increases. Thus, from this perspective, 
the value of the M parameter should be small, as stated previ-
ously. Instead, based on Fig. 5b, we can state that the course of 
the homotopy path is shorter if we apply a higher value for the 
M parameter. On the other hand, the path may become more dif-
ficult to follow if we apply a high M parameter value. Neverthe-
less, regardless of the parameter value all the feasible solutions 
of the problem are found. The primary objective in this study is 
to find all the solutions of the CSTR systems robustly and not 
to seek for an optimal value for M. Thus, in all the cases in this 
study a small value of 0.001 for M has been applied.

4.2 Exothermal reaction in an adiabatic CSTR
Following the representation in Finlayson [51], steady-state 

material and energy balances for an adiabatic CSTR in which 
a first-order reaction (e.g. A → B) occurs can be represented as

Q
V

c c T
R

A A( ) exp ( ) ,1 1 1− = − γ

Q
V

T c T
R

A1 1 1−( ) = − −( ) β γexp ,

where cA  is the normalized concentration of A in the reactor 
outlet cA with respect to the feed concentration of A cA,0 , T  is 
the normalized temperature of the reactor outlet T with respect 
to the reactor inlet temperature T0, and the problem parameters 
γ and β can be represented as

γ = E
RT
a

0

,

β
ρ

=
− ( )∆H k T c

C T
r

p

0 0

0

A, ,

where Ea is the activation energy of the reaction, R is the gas 
constant, ∆Hr is the heat of reaction, k is the kinetic constant 
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Fig. 5 The course of the homotopy path in the BioCSTR model solving with 
different M parameter values a) throughout the path course and b) in the 

vicinity of the solutions. The starting point of the homotopy path is indicated 
by (○) and the solutions by (×). Da = 1.19, ω = 0.00356 and ε = 2.53.
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of the reaction, ρ is the reaction mixture density and Cp is the 
heat capacity of the mixture. In the investigated case, k(T0) = 1. 
Let us also define the Damköhler number Da in this example as

Da
V k T
Q

R=
( )0 , and

parameter B, whose value can be applied as an indicator of the 
appearance of multiplicities in the system as proven by Balako-
taiah and Luss [24], as

B E
RT

H c
C T k T

a r

p

=
−( )

=
( )0

0

0 0

∆ A, .
ρ

γβ

Applying these parameters, Eqs. (11) and (12) can be combined 
to give

1
1

1

0−( ) − −( )
+ −( )
















=c c Da

B c
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A1
exp ,

γ

from which cA  can be solved and substituted either to Eq. 
(11) or (12) to give us also the value of T . On the other hand, 
according to the analysis of Balakotaiah and Luss [24], the 
exact uniqueness-multiplicity boundary can be presented as

c B B
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where cA
*  is the dimensionless concentration of A at the unique-

ness-multiplicity boundary. As can be observed from Eq. (18), 
a multiplicity within the feasible domain exists for some Da if, 
and only if,

B > −( )4 1 4 γ .

Hence, in the investigated case the criterion can be presented 
in the form 

β
γ

γ
>

−( )4 1 4
,

where γ > 0 by applying the model parameters. However, it 
is worth noting that the criterion defined in Eq. (21) is suffi-
cient for a system to have multiple solutions, if Da is within 
the domain defined by the uniqueness-multiplicity boundary in 
Eqs. (18) and (19). 

Before implementing the solving method, we also need to 
define the variable boundaries. Since Eqs. (11) and (12) have 
been normalized by the inlet concentration and inlet tem-
perature, the reactant concentration cA  cannot obtain values 

above 1 and below 0. Therefore it is justified that bcA

max =1  and 
bcA

min = 0 . Even though T  cannot obtain values below 0, values 
above 1 are feasible when an exothermal reaction takes place 
in an adiabatic reactor. In this case, the maximum value T  can 
be determined by evaluating the temperature, which the reac-
tor reaches for complete conversion of A. However, here the 
domain boundary values for T  as bT

max .=1 5  and bT
min .= 0 5   

are applied for illustration purposes of the solving progress,

4.2.1 Single solution
The adiabatic CSTR model has only one feasible solu-

tion unless the condition of Eq. (21) is fulfilled. Let us 
apply the following set of parameters: Q/VR =8.7, β = 0.15 
and γ = 30. Hence, the right-hand side of Eq. (21) is given 
the value of 0.15385, which is bigger than the value of 
β. Thus, the model has only one feasible solution. Let 
us investigate the properties of the proposed modified 
Newton homotopy-based strategy with this simple prob-
lem. Use of the parameters results in the Jacobian matrix

f f 0' c T '( , ) )inf inf . .

. .
0 0

11 1675 17 2694

0 1727 7 4258
= = 





− −
−

( .
 

The MATLAB 

fsolve routine results in a solution xinf
inf

inf

.

.

∗
∗

∗
=








 =











c
T
A 0 2693

0 0365
, 

which corresponds to the solution x∗
∗

=








 =











c
T
A
*

.

.

0 7311

1 0403
.

By using this solution as a starting point for homotopy path
tracking, Eq. (3) results in the path shown in Fig. 6.

As shown in Fig. 6, the path intercepts the  θ = 0  plane at the 
starting point only. This means that with this set of parameters, 
Eqs. (11) and (12) have only one solution, as stated above. The 
path intercepts the  θ = −1  and  θ = 1  planes at the points where 
the variables have the same values but with opposite signs.
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Fig. 6 Homotopy path in the mapped variable space with the method 
of the present study by using the parameters: Q/VR = 8.7, β = 0.15 
and γ = 30. Starting point of the homotopy path (○) and points (●) 

where the path intercepts the θ = −1 and θ = 1planes.
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4.2.2 Multiple steady-state solutions
Now, let us investigate the same adiabatic CSTR model, but 

with different parameters, to evaluate the capabilities of the 
proposed solving strategy when the model has multiple solu-
tions. We will use the parameter set Q/VR = 25, γ = 30 and β 
= 0.25 . Hence, β has a value bigger than 0.15385. Thus, the 
multiplicity condition given by Eq. (21) is fulfilled. As can be 
seen in Fig. 7, with these parameter values, Da = VR/Q = 0.04, 
the CSTR system has three feasible solutions.

As illustrated in Fig. 7, the system exhibits an S-shape solu-
tion curve, which was to be expected based on the analysis of 
Balakotaiah and Luss [24]. In addition, the multiplicity of the 
solutions occurs within the range of Da Î [0.02630, 0.06032]. 
These uniqueness-multiplicity boundaries can also be calcu-
lated from Eqs. (18) and (19). It is worth noting that the system 
has two feasible solutions only where the solution curve crosses 
the uniqueness-multiplicity boundaries. The feasible solutions 
with the applied parameter set are represented in Table 1.

The Jacobian matrix evaluated at the centre of the 
variable space with mapped variables is f' f 0( , ) )inf infc T '0 0 = (

=
− −

−










29 9336 17 2694

0 2878 24 4650

. .

. .
. Use of the MATLAB fsolve routine

results in the feasible solution 







=∗

0127.0
9373.0infx , which corre-

sponds in the unmapped space to 







=∗

0144.1
9422.0

x . By using this

solution as a starting point for homotopy path tracking, usage of 
Eq. (3) results in the path represented in Fig. 8.

As can be seen in Fig. 8, all the solutions listed in Table 1 
are achieved on a continuous homotopy path. It can also be 
noticed that the path intercepts both the  θ = −1  and  θ = 1  
planes at the points where the variables have the same values 
but with opposite signs.

4.3 Exothermal reaction in a cooled CSTR
Following the representation in Shacham et al. [52], steady-

state material and energy balances for a cooled, perfectly mixed 
CSTR (see Fig. 9) with an irreversible exothermal first-order 
reaction with respect to component A can be written as

F
V

c c kc
R

( ) ,A A A0 0− − =

F
V

T T
C
kc UA

C V
T T

R p p R
j( ) ( ) ,0 0− − − − =

λ
ρ ρA

F T T UA
C

T Tj j j
j j

j( ) ( ) .0 0− + − =
ρ

In Eqs. (22)–(24), U is the overall heat transfer coefficient,  
A is the overall heat transfer area, Fj is the volumetric flow rate 
cooling media, ρj is the density of the cooling media, Cj is the 
heat capacity of the cooling media, λ is the heat of reaction, and 
Tj0 and Tj are the inlet and outlet temperatures of the cooling 
media. The reaction rate coefficient, k, follows the representation

k E
RT

a=
−






α exp ,

where α is the reaction frequency factor. In the process 
model, Eqs. (22)–(25), negligible heat losses, constant densi-
ties and perfect mixing both inside the reactor (reacting mix-
ture) and cooling jacket (cooling media) have been assumed.

Table 1 The feasible solutions of the adiabatic CSTR model with an 
exothermal reaction. Q/VR = 25, β = 0.25 and γ = 30 

cA [-] T  [-]

0.94223 1.01444

0.55766 1.11058

0.08631 1.22842
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Fig. 7 The adiabatic CSTR system solutions determined with the proposed 
solving strategy as a function of the Damköhler number defined in Eq. (15). 
The meshes indicate the location of the uniqueness-multiplicity boundaries.
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Fig. 8 Homotopy path in the mapped variable space with the method of the 
present study. Starting point of the homotopy path (○), solutions (×), and 
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Fig. 9 A schematic representation of a cooled CSTR with an 
exothermal reaction.

Cooled CSTR systems with a simple exothermal kinetic 
reaction, i.e. Eqs. (22)–(23), have been investigated in a mul-
titude of studies (see e.g. Golubitsky and Keyfitz [21]; Bala-
kotaiah and Luss [24,27]; Russo and Bequette [17]. However, 
the effects of the cooling medium energy balance, i.e. Eq. (24), 
on the multiplicities have received considerably less attention. 
Russo and Bequette [17] observed that the addition of the cool-
ing jacket dynamics along with the energy balance changes the 
multiplicity patterns of the system. 

Utilising the parameter values presented in Table 2, the 
equation set, Eqs. (22)–(24), has three unknowns: T, cA and Tj. 
Before the solution of the equation set, the feasible variable 
domain needs to be defined. First, the values of the unknowns 
must be positive. On the other hand, the unknowns do not have 
any generally defined maximum for their values. Thus, the 
upper domain boundary values must be artificially specified. In 
addition, in order to make the problem behave better numeri-
cally, the lower domain boundary value for temperatures is 
specified to have a small positive value instead of 0. In this 
case, the problem domain boundary values bi

max  and bi
min  have 

been specified as presented in Table 3.
Again, the MATLAB fsolve routine is used in Phase I of the 

solving strategy. The fsolve routine converges from the initial 
guess presented in Table 3 to the solution xinf* = [0.0574 −0.0233 
0.0565], which corresponds to the solution x* = [537.1641 
0.4739 536.6157] in the unmapped space. By tracking the 
homotopy path determined by Eq. (3) forward and backward 
with respect to the homotopy parameter, the homotopy path 
illustrated in Fig. 10 is formed.

The continuous homotopy path that is formed passes through 
all the feasible solutions of the cooled CSTR model. The solu-
tions are presented in Table 4. The solutions are the same as 
summarized in Shacham et al. [52].

Table 4 The feasible solutions of the cooled CSTR model.

T [°R] cA [lb-mol ft-3] Tj [°R]

Solution 1 537.1641 0.4739 536.6157

Solution 2 599.9909 0.2451 594.6328

Solution 3 651.0596 0.0591 641.7920

Table 2 The applied parameter values in the cooled CSTR model, Eqs. (22)–
(25). Numerical values are from Shacham et al. [52].

Variable Value Variable Value

Q 40 ft3 hr-1 λ -30 000 BTU lb-mol-1

Fj 49.9 ft3 hr-1 ρ 50 lbm ft-3

VR 48 ft3 ρj 62.3 lbm ft-3

cA0 0.5 lb-mol ft-3 U 150 BTU hr-1 ft-2 °R-1

T0 530 °R A 250 ft2

Tj0 530 °R α 7.08·1010 hr-1

Cp 0.75 BTU lbm-1 °R-1 Ea 30 000 BTU lb-mol-1

Cj 1.0 BTU lbm-1 °R-1 R 1.99 BTU lb-mol-1 °R-1

Table 3 Domain boundary and initial guess values.

Variable bi
min bi

max Initial guess

T [°R] 200 800 500

cA [lb-mol ft-3] 0 1 0.5

Tj [°R] 200 800 500
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Fig. 10 Homotopy path with respect to the homotopy parameter 
and inf

Ac  with the method of the present study. Starting point of the 
homotopy path (○), solutions (×), and points (●) where the path 

intercepts the θ = −1 and θ = 1 planes.
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4.4 Adiabatic CSTR with consecutive reactions
The following adiabatic CSTR has been presented in Seader et 

al. [39] and can also be found in the test problem library accessed 
through the website: http://www.polymath-software.com/library 
[53]. The system consists of an adiabatic CSTR wherein two reac-
tions take place. The first reaction is catalytic and irreversible:

A B Rk1 → + ,

and the second reaction is reversible and non-catalytic:

B C.
k

k
2

2
'

� ⇀��↽ ���

The rate expression [kmol m-3 s-1] of the first reaction is

r k c
K c1
1

1
=

+
A

A B

,

and the rate expression [kmol m-3 s-1] of the second reversible 
reaction is

r k c k c2 2 2= −B C

' .

The kinetic [s-1] and adsorption equilibrium [m3 kmol-1] terms 
as a function of temperature are
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where T is in Kelvins and R = 8.314 J mol-1 K-1. The steady-
state mass balance equations for the CSTR reactor in terms of 
the residence time, Θ, can be written as

c c k c
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and the steady-state enthalpy balance, taking into account the 
sensible enthalpy and reaction enthalpies, as
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As will be noticed, the equation set to be solved constitutes 
a set of four equations (Eqs. (34)–(37)) and four variables, if 
the reactor inlet conditions (cA0 ,cB0 , cC0  and T0) and residence 
time Θ have been specified. Thus, the unknown variables are 
the reactor effluent quantities (cA ,cB and cC) and the reactor 
temperature T. The model of the adiabatic CSTR reactor, i.e. 
Eqs. (34)–(37), may have multiple solutions depending on the 
given specifications. Use of the specifications cA0  = 3 kmol m-3, 
cB0 = cC0 = 0, T0 = 298 K and Θ = 300 s results in as many as five 
feasible steady-state solutions.

All the problem variables have a physical meaning. In addition, 
they are feasible only when they are positive. The domain bound-
ary values and initial guess utilised are illustrated in Table 5.

Table 5 Domain boundary values and initial guesses.

Variable bi
min bi

max Initial guess

cA  [kmol m-3] 0 10 5

cB  [kmol m-3] 0 10 5

cC [kmol m-3] 0 10 5

T [K] 200 800 500

With the initial guess, the MATLAB fsolve routine results in 
a solution: cA= 3.8011 ∙ 10−3 kmol/m3, cB= 1.7136 kmol/m3, cC= 
1.2826 kmol/m3 and T = 594.0274 K. By tracking the homot-
opy path defined by Eq. (3), all the five solutions listed in Table 
6 are approached on a single continuous path. In addition, as 
Fig. 11 illustrates, the path also intercepts the θ = 0 plane at two 
additional points. Because these points lie inside the bound-
ing zone, they do not represent valid solutions of the adiabatic 
CSTR system model and are thus not taken into account in the 
set of feasible solutions. The additional points do not indicate 
that the problem would have feasible or unfeasible solutions 
outside the defined problem domain or inside the bounding 
zone. Rather, the additional points are a result of the mathemat-
ical formulation of Eq. (3). 

The probability of having feasible solutions inside the prob-
lem bounding zone can be further decreased by using higher 
absolute numerical values for the lower, li

inf , and upper, inf
iu

, inner boundaries. In addition, the capability of the method to 
approach feasible solutions very close to the problem domain 
boundaries bi

min  and bi
max  is improved. However, because the 

homotopy path is tracked in the mapped variable space in the 
applied solving method, the length of the path would inevitably 
increase, thus increasing the solving time. Knowledge about 
the behaviour of the system can be exploited in order to select 
numerical values for the inner domain boundaries so that the 
method would be able to approach all the feasible solutions 
of the problem robustly but still restrict the solving time from 
becoming unnecessarily high.
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Fig. 11 Homotopy path with respect to the homotopy parameter, cA
inf  and 

cB
inf  with the method of the present study. Starting point of the homotopy 

path (○), solutions (×), unfeasible solutions (+), and points (●) where the path 
intercepts the θ = −1 and θ = 1 planes.

Table 6 Feasible solutions for the adiabatic CSTR.

cA

[kmol m-3]
cB

[kmol m-3]
cC

[kmol m-3]
T

[K]

Solution 1 2.78732 0.21268 6.4686·10-8 310.213

Solution 2 2.38042 0.61958 1.6427·10-6 333.492

Solution 3 0.12640 2.84991 0.02369 462.569

Solution 4 0.00380 1.71363 1.28257 594.027

Solution 5 0.00038 0.68889 2.31073 691.624

As can be seen in Table 6, solutions 1 and 2 are located close 
to the domain boundary with respect to cC. Let us examine the 
importance of the correct numerical evaluation of the term 
f (x' )inf

0 in Eq. (3), which is the main difference between the 
previous attempt of Malinen et al. [32] and the current work to 
formulate a robust solution strategy for chemical engineering 
systems. Let us assume that we evaluate the Jacobian close to 
the domain boundary, i.e. at solution 1, following the formula-
tion of Malinen et al. [32] instead of the centre of the feasible 
variable domain, i.e. x 00

inf = , as proposed in the solving strat-
egy of this study. The change in the homotopy path course is 
shown in Fig. 12.

It is evident based on Fig. 12 that the selected location of 
evaluating f (x' )inf

0  has a considerable effect on the course of 
the homotopy path. Depending on the evaluation location, the 
homotopy path crosses the domain boundaries with respect to 
the homotopy parameter or cC

inf . Luckily, also when applying 
solution 1 as the starting point, all the feasible solutions are 
found. It is also important to acknowledge that when applying 
solution 1 as the starting point, the domain boundary cross-
ing occurs in a similar fashion as in the proposed strategy, i.e. 
the path interception occurs when the bounding is in force for 
all variables. In addition, the path intercepts the cC

inf = −20  and 

cC
inf = 20  2 planes at the points where the homotopy param-

eter, cA
inf  and cC

inf  have the same values but with opposite signs. 
Thus, even in this case, we can continue path tracking at (θ, xinf) 
in the same direction from (−θ, −xinf). 

The main reason for the differences between the homotopy 
paths of different f (x' )inf

0 evaluation locations is the numeri-
cal procedure applied in the evaluation. In this study Jaco-
bian was evaluated within the fsolve routine of Matlab. In the 
investigated case, the evaluated Jacobian pattern is different 
when evaluated at solution 1 rather than at the centre of the

domain. The Jacobian patterns are 

X X X
X X X X

X X X
X X X



















 and 

X X X
X X X

X X X
X X X



















 for the proposed strategy and the evaluation

at solution 1 as proposed in Malinen et al. [32], respectively. 
The Jacobian patterns differ with respect to one element. The 
element at (2,3) is evaluated zero at solution 1, whereas evalu-
ation of the Jacobian with the proposed solving strategy results 
in the correct Jacobian pattern, where the element is non-zero. 
As a consequence of the incorrect Jacobian pattern evaluation 
at solution 1, the term f (x x x )' )(inf inf ,inf

0 − b  does not compen-
sate for the annihilation of f(xinf ), thus resulting in a path that 
is not bounded with respect to the mapped variables, xinf , as 
shown in Fig. 12. The eventual outcome of this is that the solu-
tion is interrupted as the path enters the non-physical variable 
domain. Thus, the shortcoming of the method proposed in 
Malinen et al. [32] can be tackled by appropriate selection of 
the Jacobian evaluation location. However, it is worth noting 
that the incorrect Jacobian pattern evaluation may occur any-
where within the variable domain, but applying evaluation in 
the centre of the domain increases the probability of yielding 
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Fig. 12 Homotopy paths with respect to the homotopy parameter, cA
inf  

and cC
inf  by evaluating the f (x' )inf

0 term at x 00

inf =  or at solution 1 of the 
adiabatic CSTR with consecutive reactions. The black path is common for 

both alternatives, the red path is only for solution 1 applying homotopy, and 
the blue path is only for x 00

inf =  applying homotopy. Starting point of the 
homotopy path (○), solutions (×), unfeasible solutions (+), and points (●) 

where the path intercepts the domain boundaries.
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the correct Jacobian pattern. Hence, it may be useful to verify 
that we have evaluated the Jacobian pattern correctly by evalu-
ating it in multiple locations along the variable domain before 
starting the solving. Nevertheless, assuming that the Jacobian 
pattern is correct and the non-zero elements of the Jacobian 
have numerically significant values, robust solving of multiple 
solutions for CSTR systems is enabled. 

5 Conclusions
In the present paper, a solving strategy has been presented, 

which can be used for the robust determination of all the fea-
sible solutions of CSTR systems under given specifications, or 
alternatively to provide the information that the problem has 
no multiple solutions, presuming only that one feasible solu-
tion of the system is available. With this respect, the strategy 
complements the existing NAE solving algorithms by offering 
a robust problem-independent tool for the determination of 
multiple solutions.

The proposed solving strategy utilizes the previously pre-
sented Newton homotopy-based method [32]. All the feasible 
solutions of the studied CSTR models were obtained along a 
single homotopy branch without exiting the feasible variable 
domain. Thus, the solving method applied in the proposed 
solving strategy is highly suitable for chemical engineering 
problem solving, where problem variables must have physi-
cally meaningful values. In addition, it was shown that the 
robustness of the method presented in Malinen et al. [32] can 
be improved by evaluating the Jacobian pattern in the centre of 
the domain rather at a solution near the domain boundary. On 
the other hand, the value of  M  has a considerable effect on the 
length of the homotopy path. Thus, the selection of the value of  
M  should be investigated in future work.

As a whole, the applicability and performance of the pro-
posed solving strategy should also be considered for other 
chemical engineering systems, such as various separation sys-
tems and reactive systems with several phases in thermody-
namic equilibrium, in future research. 

Nomenclature
a  Parameter in the discriminant determination
A  Overall heat transfer area
b  Domain boundary
c  Concentration
c   Dimensionless concentration
e  n × 1 vector where every element has the   

  value one
E  Activation energy
f  Equation set
f’  Jacobian matrix of f
F  Volumetric flow rate
g  Auxiliary function in the homotopy equation
h  Homotopy function

k  Reaction rate coefficient
K  Constant or equilibrium
l  Lower boundary
M  Coefficient
n  Dimension
Q  Volumetric flow rate
r  Reaction rate
R  Gas constant
S  Substrate concentration
T  Temperature
T   Dimensionless temperature
u  Upper boundary
U  Overall heat transfer coefficient
V  Volume
x  Variable vector
z  Trivial solution of the tangent plane   

  distance function
0  Inlet

Greek Letters
α  Reaction frequency factor
β  Parameter
γ  Dimensionless parameter
∆  Discriminant
ε  Dimensionless variable
θ  Homotopy parameter
λ  Heat of reaction
μ  Specific growth reaction rate
π  Penalty function
ρ  Density
σ  Dimensionless variable
Θ  Residence time
ω  Dimensionless variable

Subscripts
A  Component A or adsorption
b  Bounded
B  Component B
C  Component C
i  ith
j  Cooling media
I  Indication for inhibition constant
in  Inlet
m  Maximum
R  Reactor
S  Indication for Monod constant
T  Temperature
X  Non-zero element of Jacobian matrix
x  Problem variable
θ  Homotopy parameter
0  Point for Jacobian matrix determination   

  with mapped variables
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Superscripts
b  Bounded
inf  Indication for an infinite variable space, i.e.   

  for a mapped variable space
max  Maximum
min  Minimum
mod  Modified
0  Starting point
*  Solution point or      

  uniqueness-multiplicity boundary
‘  Reversible

Abbreviations
Cp  Heat capacity for reacting mixture
Cj  Heat capacity for cooling media
Da  Damköhler number
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