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Abstract
The Gaussian error propagation is a state of the art expres-

sion in error analysis for estimating standard deviation for 
an expression f(x1,…,xn,z) via its variables. One of its basic 
assumptions is the independence of the measurable variables in 
its argument. However, in practice, measurable quantities are 
correlated somehow, and sometimes, z depends on some of the 
xi’s. We provide the generalized version of the Gaussian error 
propagation formula in this case. We will prove this with the 
formula for total derivative of a general multivariable function 
for which some of its variables are not independent from the 
others; a counterpart to the probability approach of this subject.
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1 Introduction
Frequently, the final result of an experiment cannot be meas-

ured directly, rather, it is calculated from several measurable 
physical quantities, each of which has a mean value and an 
error, and we are interested in the resulting error in the final 
result of such an experiment. Often, the measurement protocol 
is very complex and the set of measured physical quantities 
is a mix of variables in which some are independent of others 
and some are not. More importantly, selecting only independ-
ent physical quantities to be measured is not always possible. 
These difficulties occur in data analysis after collecting the out-
come of measurements, for example: in weather observation or 
meteorology, astro- or high-energy physics, physical-, chemi-
cal- or biological measurements, as well as economics.

Below we discuss a theorem, how the Gaussian error propa-
gation reads if in its x1, x2, x3,…,xn, z1,…,zm variables, the first 
n (the xi’s) are independent, but among the z1,…,zm each one 
depends on some of the xi’s. When all n variables are inde-
pendent and no such zj exists, the well known Eq.1 (written 
below) holds, commonly appearing in corresponding text and 
lab books. However, in many complex and/or large scale meas-
urements, the variables may not be totally independent, and 
there may not be an alternative way to measure/choose purely 
independent variables. Statisticians use a procedure commonly 
called the delta method [1,2,3] to obtain an estimator of the var-
iance when the estimator is not a simple sum of observations. 
The basic idea is to use a method from calculus called a Taylor 
series expansion to derive a linear function that approximates 
the more complicated function. To the best of our knowledge, 
although this case has been commonly formulated with algo-
rithms using the concept of covariance via probability theory 
approach, still there is no compact expression formulated via 
calculus – here we do this.

2 Problem formulation
If the error in x1 is Δx1, then the error in f can be approx-

imated as (∂f/∂x1)Δx1, and similarly for x2, and finally 
(Δf)2 = (∂f/∂x1)

2(Δx1)
2 + (∂f/∂x2)

2(Δx2)
2, leaving the cross term 
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2(∂f / ∂x1)(∂f / ∂x2)(Δx1)(Δx2). More generally, one ends up 
with the famous Gaussian error propagation formula [4,5] 
which states that if f = f(x1,x2,…,xn) and x1, x2, …,xn are inde-
pendent quantities, e.g. of measurement possessing Gaussian 
distribution, the standard deviation of f (denoted as sf) is

(sf)
2 = (Δf)2 = Σ(i = 1…n)(∂f / ∂xi)

2(sxi)
2.� (1)

To complete Eq.1 for a measurement in practice, let u denote 
any of the independent variables among x1, x2, …,xn, and uj 
is the jth measured quantity for u, where j = 1,2,…,m(u). The 
mean of u is uavrg≡ Σ(j=1…m)uj/m, and the standard deviation of u is 
su ≡ [Σ(j=1…m)(uj – uavrg)

2 / (m – 1)]1/2. On the other hand, to complete
Eq.1 for probability variables u, one needs the corresponding unbi-
ased estimate for expected value (E(u)) and its variance (D2(u)).

A simple example can illustrate what the misapplication of 
independency or dependency can cause. Let f = x1+x2, and x2 = x1 
with the obvious Δx1 = Δx2. Assuming them to be independent var-
iables (although they are not), (Δf)2 = (∂f/∂x1)

2(Δx1)
2 + (∂f/∂x2)

2

(Δx2)
2 = (Δx1)

2 + (Δx2)
2 = 2(Δx1)

2 or Δf = √2 (Δx1). The cor-
rect expression is f = x1 + x2 = 2x1 and (Δf)2 = (∂f / ∂x1)

2(Δx1)
2

= (df / dx1)
2(Δx1)

2, or more simply Δf = (df / dx1)(Δx1) = 2(Δx1), 
i.e. the misapplication underestimates it (√2 < 2). Note: the 
equation of Gaussian error propagation degrades to the simple 
estimation of derivatives with the elementary numerical device  
Δf / (Δx1) ≈ df / dx1 for one variable (n = 1), given that in 
numerical analysis the Δx1 is a small step while in error analysis 
the Δx1 is the standard deviation. Similarly, if f = x1 – x2, then 
the misapplication yields Δf = √2(Δx1) again, but the correct 
expression yields Δf = 0 (since f = x1 – x2= x1 – x1 = 0), i.e. the 
misapplication overestimates it (√2 > 0). The latter is a warning 
for a general perspective: in a statistical test for a hypothesis, 
predicting small positive value instead of zero may mistakenly 
suggest a statement to be true or false.

Now we outline how a measurement can come up with a 
mix of dependent and independent variables. Let us suppose 
that one has to calculate a quantity of which dependence is 
f(x1,x2,x3,x4(x2,x3,x5)), where x1,x2,x3 and x5 are independ-
ent variables, and x4 is not, i.e. dependent as it is indicated. 
However, x1,x2,x3 and x4 can be measured directly, but not so 
in the case of x5. Algebraically it means f(x1,x2,x3,x4(x2,x3,x5)) 
≡ g(x1,x2,x3,x4,x5) ≡ h(x1,x2,x3,x5) with the proper relationship 
among f, g and h. In other words, x5 does not show up alone 
in the argument, but with x2 and x3 via x4. In this work we call 
these f-forms and h-forms. In the example mentioned above  
f = x1 + x2 with x1 = x2, so h = 2x1. In this way, the general defi-
nition of f- and h-forms is obvious. The h-form may have fewer 
variables than the f-form, but not necessarily. In the particular 
case above, both have four variables, but in the case of f = x1 + x2 
with x1 = x2, f has two variables, as opposed to h which has only 
one. Below, we will need their partial derivatives, and e.g. in 
the case above ∂f / ∂x5 = 0, despite that, (∂f / ∂x4)(∂x4 / ∂x5) is 

generally not zero. This is because x5 does not appear in the 
argument of f, but otherwise it is possible. In other words, one 
has to be careful with the partial derivatives. It is obvious, that 
the f-form has a mixture of dependent and independent vari-
ables in its argument, while the h-form has only independent 
variables, but both have the same graph. Below, we will con-
sider the general function f(x1,…,xn,z1,…,zm), where x1,…,xn 
are independent variables, and z1,…,zm are dependent variables. 
The latter means that these depend on at least one of x1,…,xn,
e.g. z1 = z1(x1, x2), z2 = z2(x2, x3, x5) with n ≥ 5, m ≥ 2 and so 
on. Algebraically the f-form can be reduced to h-form, because 
sometimes the relationship is indeed known, and the latter has 
only independent variables in its argument. However, sometimes 
even the exact analytical relationship is unknown, or in practice 
only the f-form can be used to evaluate that particular measure-
ment and the h-form cannot. We try to enumerate that the effect 
of “mixture variables” can be positive or negative alike. It clearly 
shows that the unknown biases committed might be compensated 
by each other. The correlation of variables has a paradoxical out-
come, e.g. the probability of chance correlation is diminished if 
the variables selected from a large pool are correlated [6].

Next, for the sake of brevity, we will call and use the errors 
Δf and Δxi, i.e. the standard deviation belonging to their mean 
or exact values. The measured variables (xi) obey the Gaussian 
distribution, so their actual error is smaller than these threshold 
(Δxi) values at a certain significance level. Even if f is not known 
analytically, via the measured or non-explicitly (e.g. recursively, 
etc.) calculated f(x) at x and x + Δx, the derivative of f can be 
approximated numerically. On the other hand, if the measured x 
suffers an error of size as the standard deviation (that is x ± Δx, 
i.e. the maximal expected deviation on a certain significance 
level), the error made in f, the Δf (which is also a standard devia-
tion), can be estimated as (∂f / ∂x)Δx, if (∂f / ∂x) is known – that 
is (Δf)2 ≈ (∂f / ∂x)2Δx2, which is Eq.1 for one variable.

3 The way to the reformulation via calculus
Without losing generality, let us suppose that there is only 

one dependent z, and we consider the f(x1,…,xn,z), where 
x1,…,xn are independent variables and z = z(x1,…,xn). The lat-
ter includes two distinct cases: 1.: z depends on at least one 
(there exist i s.t. ∂f / ∂xi ≠ 0, i=1,…,n), more, or all (for all i, 
∂f / ∂xi ≠ 0) variables, 2.: z does not depend on any of the xi (for 
all i, ∂f / ∂xi = 0). If z does not depend on any xi, that is, the set 
{x1,…,xn, z} contains only independent variables, the total 
derivative is

df = Σ(i = 1…n)(∂f / ∂xi)dxi+(∂f / ∂z)dz,� (2)

and the Gaussian error propagation comes from applying Eq.1 
with the extension for one more variable

(Δf)2 = Σ(i = 1…n)(∂f / ∂xi)
2(Δxi)

2 + (∂f / ∂z)2(Δz)2. � (3)
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Again, the independence is strictly necessary for both,  
Eqs. 2,3. The close relationship between the two algebraic 
structures between Eqs. 2 and 3 is visible. (Again, the way 
to Eq. 3, which is used for estimating standard deviation, the 
square of the exact expression in Eq. 2 was taken, along with 
replacing the derivative (d) with standard deviation (Δ) and 
leaving all cross terms.) If z depends on at least one xi, gener-
ally h(x1,…,xn) = f(x1,…,xn, z(x1,…,xn)) holds with a proper h, 
then Eqs. 2,3 are false.

An elementary example can demonstrate how Eq. 2 breaks 
or survives if dependence arises among the variables. If 
f(x1,x2,z) = x1

2x2
3z then ∂f / ∂x1 = 2x1x2

3z and misapplying 
the partial derivatives for dependent variables for a case like 
z = x1x2: ∂f / ∂x1 = 2x1x2

3z~2x1
2x2

4, tilde means an “equality 
by mistake”. Given the h-form h(x1,x2) = x1

2x2
3z = x1

3x2
4, and 

∂h / ∂x1 = 3x1
2x2

4 ≠ 2x1
2x2

4. In fact, the substitution with 
z = x1x2 was used at the wrong point, because df = (∂f / ∂x1)dx1 
+ (∂f / ∂x2)dx2 + (∂f / ∂z)dz = 2x1x2

3zdx1 + 3x1
2x2

2zdx2 + x1
2x2

3dz 
= 2x1

2x2
4dx1+ 3x1

3x2
3dx2 + x1

2x2
3(x2dx1 + x1dx2) = 3x1

2x2
4dx1 

+ 4x1
3x2

3dx2,where dz = x2dx1 + x1dx2 was used in the second 
step, i.e. at a proper point. Eq. 2 can be applied directly in the  
h-form, because it only contains the independent x1 and x2, giving 
the same dh = 3x1

2x2
4dx1+4x1

3x2
3dx2. (We note as a finer detail, 

calculation of dh needed fewer algebraic operations than df.)  
The critical point was that the ∂f / ∂x1= 2x1x2

3z and 
∂h/∂x1 = 3x1

2x2
4, and the similar ones for index 2, are not equiv-

alent for substitution of z into the former, although f and h have 
exactly the same graph. In a more general case, f has n + 1 vari-
ables, while h has n, and if z depended on at least one of xi’s, 
the total derivative in Eq. 2 has to be reformulated as

df = Σ(i = 1…n)(∂f / ∂xi)dxi + (∂f / ∂z)dz =

Σ(i = 1…n)(∂f / ∂xi)dxi + (∂f / ∂z)(Σ(i = 1…n)(∂z / ∂xi)dxi) =

Σ(i = 1…n)[(∂f / ∂xi) + (∂f / ∂z)(∂z / ∂xi)]dxi. � (4)

For Eq. 4 we have used the chain rule only. If z does not depend 
on some xi’s for those ∂z / ∂xi = 0. If z does not depend on any 
of xi’s, all (∂f / ∂z)(∂z / ∂xi) = 0, and with an abstract compo-
sition, in fact z becomes an element of the independent set  
{x1,…,xn}, so Eq. 4 reduces to Eq. 2 or to the general expres-
sion of total derivative for independent variables, as expected. 
We note that Eq. 2 is a fundamentally known and listed equa-
tion in corresponding mathematical textbooks and tables, but 
Eq. 4 is not, although it is an almost immediate consequence.

Eq. 3 is not accurate if z depends on at least one x1, … or xn. 
In this case, Eq. 2 is also inaccurate, in fact it is false. While 
Eq. 2 is used for manipulating exact expressions, Eq. 3 is used 
for estimating standard deviations. In other words, not using 
Eq. 4 as opposed to Eq. 2, for dependent variables is a mistake. 
While not developing Eq. 3, as Eq. 2 has been developed to 
Eq. 4, would yield a weaker estimation only for Gaussian error 

propagation. If x1,…, xn are independent and z depends on at 
least one of x1, …, xn, the trivial

(Δh)2 = Σ(i = 1…n)(∂h / ∂xi)
2(Δxi)

2� (5)

still holds for the h-form. However, not the h-form but the 
f-form is known or to be used by some conditions/restrictions 
of the measurement [7]. For this reason, a more useful and accu-
rate expression is developed here for practice. It is by employ-
ing the algebraic relationship between Eqs. 2 and 3, but starting 
from Eq. 4. The Gaussian error propagation in this case is

(Δf)2 = Σ(i = 1…n)[(∂f / ∂xi) + (∂f / ∂z)(∂z / ∂xi)]
2(Δxi)

2.� (6)

More generally, if y = f(x1,…,xn,z1,…,zm) with dependent 
variables zj = zj(x1,…,xn) for j = 1,…,m, then

(Δf)2 = Σ(i = 1…n)[(∂f / ∂xi) + 
Σ(j = 1…m)(∂f / ∂zj)(∂zj / ∂xi)]

2(Δxi)
2.� (7)

Furthermore, if z2 depends on z1 too, as z2 = z2(x1,..,xn,z1) and 
so on, even Eq. 7 can be developed further with the chain rule for 
the derivatives of embed functions. Moreover, if z2 depends on 
(x1,..,xn,z1,z2), i.e. an implicit expression is given, the derivation 
rule for implicit function helps. (That is, if w(x,z(x)) = 0 or z, then 
(∂w / ∂x) + (∂w / ∂z)(dz / dx) = 0 or (dz / dx), and dz / dx can be 
expressed.) If ∂zj / ∂xi = 0 for all i = 1,…,n and all j = 1,...,m in 
Eqs. 6,7, all zj fall into the independent set of {x1,.., xn}, and Eqs. 
6,7 reduce to Eq. 3 or Eq. 1, i.e. to the general expression of Gaus-
sian error propagation for independent variables, as expected.

4 Reformulation of the Gaussian error propagation 
Explaining the title of this work, one must recall the known 

form for the standard deviation of f (denoted as sf) when its 
variables are not independent, that is

(sf)
2 = (Δf)2 = 

Σ(i = 1…n + m)Σ(j = 1…n + m)(∂f / ∂ξi)(∂f / ∂ξj)cov(ξi,ξj)
� (8)

with the terminology of probability to compare with Eqs. 
6 and 7. The cov(ξi,ξj) is the covariance of probability vari-
ables ξi and ξj as well as if i = j then cov(ξi,ξi) = (Δξi)

2, more, 
if cov(ξi,ξj) = δij(Δξi)

2 with δij the Kronecker-delta, it reduces to 
the form as in Eq. 1 (along with correspondence n + m → n). 
Notice that in Eq. 8 the variables (ξ1,ξ2,…,ξn+m) correspond to 
the (x1,…,xn,z1,…,zm) as grouped in Eqs. 6,7, and in Eqs. 6,7 the 
cov(xi,xj) = δij(Δxi)

2 for i,j=1,…n, but generally cov(zi,zj) ≠ 0 if 
i ≠ j and generally cov(xi,zj) ≠ 0. The products (terms) in the 
double sum for (sf)

2 in Eq. 8 (belonging to the terminology of 
probability theory) can be identified one by one with the prod-
ucts (terms) from the expansion of Eqs. 6 or 7, but the latter 
contains partial derivatives only (as entities from calculus).
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